Leading Edge Radius Effects on VAWT Performance

IF 1.1 4区 工程技术 Q4 MECHANICS Journal of Applied Fluid Mechanics Pub Date : 2023-09-01 DOI:10.47176/jafm.16.09.1626
N. Davandeh, †. M.J.Maghrebi
{"title":"Leading Edge Radius Effects on VAWT Performance","authors":"N. Davandeh, †. M.J.Maghrebi","doi":"10.47176/jafm.16.09.1626","DOIUrl":null,"url":null,"abstract":"Numerous studies have been conducted to investigate effect of blade geometry of vertical axis wind turbine performance. Most of the evaluations have focused on the airfoil series and airfoil geometry parameters such as thickness and camber of the airfoil. Few studies have examined the effect of other blade geometry parameters on the vertical axis wind turbine performance. In the present study, the effect of geometric change in leading-edge radius (LER) of a vertical axis wind turbine performance has been numerically studied. Hence, modified NACA 0021 airfoil profiles were created using the geometric method (CST). Then, the flow behavior around a Darrieus vertical axis wind turbine was simulated under the influence of the reduction and set-up coefficients of the leading-edge radius at a constant wind speed of 9 m/s and a tip speed ratio of 1.5 to 3.5 using the computational fluid dynamics. Additionally, the effects of the examined parameter (leading-edge radius) on fluid flow and aerodynamic performance coefficients, including the coefficients of power and torque, were investigated. The results indicated that the leading-edge radius affected the near wake flow of the turbine, and the optimization of leading-edge radius parameter controls the dynamic stall and reduces the formation of a vortex. Finally, the optimization of LER revealed that at 20% reduction in the LER the performance of the turbine at tip speed ratio of 1.5 was increased by more than 50%. This reinforces the self-starting capability of a Darrieus wind turbine.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.16.09.1626","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Numerous studies have been conducted to investigate effect of blade geometry of vertical axis wind turbine performance. Most of the evaluations have focused on the airfoil series and airfoil geometry parameters such as thickness and camber of the airfoil. Few studies have examined the effect of other blade geometry parameters on the vertical axis wind turbine performance. In the present study, the effect of geometric change in leading-edge radius (LER) of a vertical axis wind turbine performance has been numerically studied. Hence, modified NACA 0021 airfoil profiles were created using the geometric method (CST). Then, the flow behavior around a Darrieus vertical axis wind turbine was simulated under the influence of the reduction and set-up coefficients of the leading-edge radius at a constant wind speed of 9 m/s and a tip speed ratio of 1.5 to 3.5 using the computational fluid dynamics. Additionally, the effects of the examined parameter (leading-edge radius) on fluid flow and aerodynamic performance coefficients, including the coefficients of power and torque, were investigated. The results indicated that the leading-edge radius affected the near wake flow of the turbine, and the optimization of leading-edge radius parameter controls the dynamic stall and reduces the formation of a vortex. Finally, the optimization of LER revealed that at 20% reduction in the LER the performance of the turbine at tip speed ratio of 1.5 was increased by more than 50%. This reinforces the self-starting capability of a Darrieus wind turbine.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
前缘半径对VAWT性能的影响
叶片几何形状对垂直轴风力机性能的影响已经进行了大量的研究。大多数的评估都集中在翼型系列和翼型几何参数,如厚度和弧度的翼型。其他叶片几何参数对垂直轴风力机性能影响的研究很少。本文采用数值方法研究了垂直轴风力机前缘半径几何变化对其性能的影响。因此,修改的NACA 0021翼型轮廓创建使用几何方法(CST)。然后,利用计算流体力学方法,模拟了恒定风速为9 m/s、叶尖速比为1.5 ~ 3.5时,前缘半径减小系数和设置系数对Darrieus垂直轴风力机的流动特性的影响。此外,还研究了检测参数(前缘半径)对流体流动和气动性能系数(包括功率系数和扭矩系数)的影响。结果表明,前缘半径对涡轮近尾流有影响,优化前缘半径参数可以控制动态失速,减少涡的形成。最后,优化后的效率表明,当效率降低20%时,涡轮在叶尖速比为1.5时的性能提高了50%以上。这加强了Darrieus风力涡轮机的自启动能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Fluid Mechanics
Journal of Applied Fluid Mechanics THERMODYNAMICS-MECHANICS
CiteScore
2.00
自引率
20.00%
发文量
138
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .
期刊最新文献
Scale Effects Investigation in Physical Modeling of Recirculating Shallow Flow Using Large Eddy Simulation Technique A Numerical Study on the Energy Dissipation Mechanisms of a Two-Stage Vertical Pump as Turbine Using Entropy Generation Theory Numerical Investigation of Oil–Air Flow Inside Tapered Roller Bearings with Oil Bath Lubrication Suppressing the Vortex Rope Oscillation and Pressure Fluctuations by the Air Admission in Propeller Hydro-Turbine Draft Tube Analysis of Near-wall Coherent Structure of Spiral Flow in Circular Pipe Based on Large Eddy Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1