{"title":"Cyclic electromechanical response of poly(vinylidene fluoride)","authors":"L. Harish, C. L. Rao","doi":"10.1504/IJMSI.2019.10022253","DOIUrl":null,"url":null,"abstract":"In this study, we present the results of cyclic electromechanical experiments conducted on uniaxially stretched poly(vinylidene fluoride) (PVDF) films. The experiments were carried out over a range of applied displacement amplitude ranging from 0.5 mm to 1.5 mm, superposed on an initial stretch on the test samples. The strains were calculated using non-contact speckle monitoring method. The hysteresis plots of mechanical and electromechanical cyclic responses are presented. Stress relaxation was observed up to 70% in orthogonal to stretch direction and 16% in the stretch direction. Observed piezoelectricity along both the directions is reported and discussed in the paper.","PeriodicalId":39035,"journal":{"name":"International Journal of Materials and Structural Integrity","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials and Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJMSI.2019.10022253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we present the results of cyclic electromechanical experiments conducted on uniaxially stretched poly(vinylidene fluoride) (PVDF) films. The experiments were carried out over a range of applied displacement amplitude ranging from 0.5 mm to 1.5 mm, superposed on an initial stretch on the test samples. The strains were calculated using non-contact speckle monitoring method. The hysteresis plots of mechanical and electromechanical cyclic responses are presented. Stress relaxation was observed up to 70% in orthogonal to stretch direction and 16% in the stretch direction. Observed piezoelectricity along both the directions is reported and discussed in the paper.