{"title":"The Application of the Generalized Regression Neural Network Model Based on Information Granulation for Short-Term Temperature Prediction","authors":"Wang Weiwei, D. Hao","doi":"10.24846/v31i3y202205","DOIUrl":null,"url":null,"abstract":": This paper proposes the Generalized Regression Neural Network (GRNN) model based on information granularity and using MATLAB programming for short-term temperature prediction. In this respect, it focuses on the daily average temperature data for the months of July and August for a period of ten years (from 2006 to 2015) for the Jiuhua Mountain scenic spot of Chizhou, in the Anhui Province. The performance of the proposed method is compared with that of the Back Propagation (BP) neural network and with that of the Gauss function for data fitting. This method not only improves the accuracy of short-term prediction, but it also overcomes the disadvantage of inaccurate data fitting. It can slightly improve the effectiveness and practicability of short-term prediction, and it can more effectively analyze short-term data on the Internet.","PeriodicalId":49466,"journal":{"name":"Studies in Informatics and Control","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Informatics and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.24846/v31i3y202205","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
: This paper proposes the Generalized Regression Neural Network (GRNN) model based on information granularity and using MATLAB programming for short-term temperature prediction. In this respect, it focuses on the daily average temperature data for the months of July and August for a period of ten years (from 2006 to 2015) for the Jiuhua Mountain scenic spot of Chizhou, in the Anhui Province. The performance of the proposed method is compared with that of the Back Propagation (BP) neural network and with that of the Gauss function for data fitting. This method not only improves the accuracy of short-term prediction, but it also overcomes the disadvantage of inaccurate data fitting. It can slightly improve the effectiveness and practicability of short-term prediction, and it can more effectively analyze short-term data on the Internet.
期刊介绍:
Studies in Informatics and Control journal provides important perspectives on topics relevant to Information Technology, with an emphasis on useful applications in the most important areas of IT.
This journal is aimed at advanced practitioners and researchers in the field of IT and welcomes original contributions from scholars and professionals worldwide.
SIC is published both in print and online by the National Institute for R&D in Informatics, ICI Bucharest. Abstracts, full text and graphics of all articles in the online version of SIC are identical to the print version of the Journal.