The role of tail network topological characteristic in portfolio selection: A TNA-PMC model

IF 1.8 4区 经济学 Q2 BUSINESS, FINANCE International Review of Finance Pub Date : 2022-03-15 DOI:10.1111/irfi.12379
Mengting Li, Qifa Xu, Cuixia Jiang, Qinna Zhao
{"title":"The role of tail network topological characteristic in portfolio selection: A TNA-PMC model","authors":"Mengting Li,&nbsp;Qifa Xu,&nbsp;Cuixia Jiang,&nbsp;Qinna Zhao","doi":"10.1111/irfi.12379","DOIUrl":null,"url":null,"abstract":"<p>To improve the performance of a large portfolio selection, we consider the effect of tail network and propose a novel tail network-augmented parametric mean-conditional value-at-risk (CVaR) portfolio selection model labeled as TNA-PMC. First, we adopt the least absolute shrinkage and selection operator-quantile vector autoregression (LASSO-QVAR) approach to construct a tail network. Second, we parameterize the weights of the mean-CVaR model as a function of asset characteristics. Third, we incorporate the effect of the tail network topological characteristic, namely eigenvector centrality (EC), on the weights to construct the TNA-PMC model. After that, we apply the model to the empirical analysis on the Shanghai Stock Exchange 50 (SSE50) Index of China from January 2010 to September 2020. Our empirical results illustrate the effectiveness of the TNA-PMC model in two aspects. First, the TNA-PMC model clarifies the economic interpretation of the characteristics, such as the negative effective of EC on the portfolio weights. Second, the TNA-PMC model performs well in terms of achieving diversification and attractive risk-adjusted return.</p>","PeriodicalId":46664,"journal":{"name":"International Review of Finance","volume":"23 1","pages":"37-57"},"PeriodicalIF":1.8000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Finance","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/irfi.12379","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 1

Abstract

To improve the performance of a large portfolio selection, we consider the effect of tail network and propose a novel tail network-augmented parametric mean-conditional value-at-risk (CVaR) portfolio selection model labeled as TNA-PMC. First, we adopt the least absolute shrinkage and selection operator-quantile vector autoregression (LASSO-QVAR) approach to construct a tail network. Second, we parameterize the weights of the mean-CVaR model as a function of asset characteristics. Third, we incorporate the effect of the tail network topological characteristic, namely eigenvector centrality (EC), on the weights to construct the TNA-PMC model. After that, we apply the model to the empirical analysis on the Shanghai Stock Exchange 50 (SSE50) Index of China from January 2010 to September 2020. Our empirical results illustrate the effectiveness of the TNA-PMC model in two aspects. First, the TNA-PMC model clarifies the economic interpretation of the characteristics, such as the negative effective of EC on the portfolio weights. Second, the TNA-PMC model performs well in terms of achieving diversification and attractive risk-adjusted return.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
尾部网络拓扑特征在投资组合选择中的作用:一个TNA‐PMC模型
为了提高大型投资组合选择的性能,我们考虑了尾网络的影响,提出了一种新的尾网络增广参数平均条件风险值(CVaR)投资组合选择模型,标记为TNA-PMC。首先,我们采用最小绝对收缩和选择算子-分位数向量自回归(LASSO-QVAR)方法构建尾部网络。其次,我们将均值- cvar模型的权重参数化为资产特征的函数。第三,结合尾网络拓扑特征特征向量中心性(EC)对权重的影响,构建TNA-PMC模型。之后,我们将该模型应用于2010年1月至2020年9月中国上海证券交易所50指数的实证分析。我们的实证结果从两个方面说明了TNA-PMC模型的有效性。首先,TNA-PMC模型阐明了EC对投资组合权重的负效应等特征的经济学解释。其次,TNA-PMC模型在实现多元化和具有吸引力的风险调整收益方面表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Review of Finance
International Review of Finance BUSINESS, FINANCE-
CiteScore
3.30
自引率
5.90%
发文量
28
期刊介绍: The International Review of Finance (IRF) publishes high-quality research on all aspects of financial economics, including traditional areas such as asset pricing, corporate finance, market microstructure, financial intermediation and regulation, financial econometrics, financial engineering and risk management, as well as new areas such as markets and institutions of emerging market economies, especially those in the Asia-Pacific region. In addition, the Letters Section in IRF is a premium outlet of letter-length research in all fields of finance. The length of the articles in the Letters Section is limited to a maximum of eight journal pages.
期刊最新文献
The impact of country level investor protection on economic policy uncertainty and corporate investment link Issue Information Trust in the retirement system and investment decisions of property investors Do passive investors influence corporate social responsibility? A risk‐management perspective The impact of democracy on liquidity and information asymmetry for NYSE cross‐listed stocks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1