Archeological Sites Classification Through Partial Imaging and Convolutional Neural Networks

IF 1.7 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal of Online and Biomedical Engineering Pub Date : 2023-06-13 DOI:10.3991/ijoe.v19i07.39045
Yaser Saleh, Muhanna A. Muhanna
{"title":"Archeological Sites Classification Through Partial Imaging and Convolutional Neural Networks","authors":"Yaser Saleh, Muhanna A. Muhanna","doi":"10.3991/ijoe.v19i07.39045","DOIUrl":null,"url":null,"abstract":"In this paper, a novel approach for classifying archeological sites using publicly available images through the use of Convolutional Neural Networks (CNNs) is presented. To surmount the problem of having a limited amount of data to use in training and testing the CNNs, our approach employs the technique of fine tuning. We conducted an experiment with four popular CNN architectures: VGG-16, VGG-19, ResNet50, and InceptionV3. The results show that our models achieved an impressive accuracy of up to 98% using the VGG-16 and InceptionV3 models and up to 97% using the ResNet50 model, while the VGG-19 model produced results with an accuracy of 95%. The results of this study demonstrate the effectiveness of our proposed approach in classifying archeological sites using publicly available images and highlight the potential of deep learning techniques for archeological site classification.","PeriodicalId":36900,"journal":{"name":"International Journal of Online and Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Online and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/ijoe.v19i07.39045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a novel approach for classifying archeological sites using publicly available images through the use of Convolutional Neural Networks (CNNs) is presented. To surmount the problem of having a limited amount of data to use in training and testing the CNNs, our approach employs the technique of fine tuning. We conducted an experiment with four popular CNN architectures: VGG-16, VGG-19, ResNet50, and InceptionV3. The results show that our models achieved an impressive accuracy of up to 98% using the VGG-16 and InceptionV3 models and up to 97% using the ResNet50 model, while the VGG-19 model produced results with an accuracy of 95%. The results of this study demonstrate the effectiveness of our proposed approach in classifying archeological sites using publicly available images and highlight the potential of deep learning techniques for archeological site classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于部分成像和卷积神经网络的考古遗址分类
在本文中,通过使用卷积神经网络(cnn)提出了一种利用公开可用的图像对考古遗址进行分类的新方法。为了克服训练和测试cnn时使用的数据量有限的问题,我们的方法采用了微调技术。我们对四种流行的CNN架构进行了实验:VGG-16、VGG-19、ResNet50和InceptionV3。结果表明,我们的模型使用VGG-16和InceptionV3模型达到了令人印象深刻的准确率高达98%,使用ResNet50模型达到了97%,而VGG-19模型产生的结果准确率为95%。本研究的结果证明了我们提出的方法在使用公开可用的图像对考古遗址进行分类方面的有效性,并突出了深度学习技术在考古遗址分类方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.00
自引率
46.20%
发文量
143
审稿时长
12 weeks
期刊最新文献
Modification of an IMU Based System for Analyzing Hand Kinematics During Activities of Daily Living 3D Pre-Processing Algorithm for MRI Images of Different Stages of AD Segmentation of Retinal Images Using Improved Segmentation Network, MesU-Net Recent Biomaterial Developments for Bone Tissue Engineering and Potential Clinical Application: Narrative Review of the Literature Brain Tumor Localization Using N-Cut
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1