Computational aspects of stable distributions

IF 4.4 2区 数学 Q1 STATISTICS & PROBABILITY Wiley Interdisciplinary Reviews-Computational Statistics Pub Date : 2021-07-23 DOI:10.1002/wics.1569
J. P. Nolan
{"title":"Computational aspects of stable distributions","authors":"J. P. Nolan","doi":"10.1002/wics.1569","DOIUrl":null,"url":null,"abstract":"Stable distributions are a class of probability distributions that generalize the normal distribution. They are the only possible limits of normalized sums of independent, identically distributed terms, so sums of a large number of such terms have to approach a stable law. The non‐Gaussian stable distributions have heavy tails with infinite variance, and can be skewed. In most cases, there are no known formulas for the density or cumulative distribution function of these laws, so using them in practice requires significant computational methods. This paper explains some of the computations used to make stable laws useful in practical problems.","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wics.1569","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1569","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

Abstract

Stable distributions are a class of probability distributions that generalize the normal distribution. They are the only possible limits of normalized sums of independent, identically distributed terms, so sums of a large number of such terms have to approach a stable law. The non‐Gaussian stable distributions have heavy tails with infinite variance, and can be skewed. In most cases, there are no known formulas for the density or cumulative distribution function of these laws, so using them in practice requires significant computational methods. This paper explains some of the computations used to make stable laws useful in practical problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稳定分布的计算方面
稳定分布是一类一般化正态分布的概率分布。它们是独立的同分布项的归一化和的唯一可能的极限,所以大量这样的项的和必须接近一个稳定定律。非高斯稳定分布具有具有无限方差的重尾,并且可能偏斜。在大多数情况下,这些定律的密度或累积分布函数没有已知的公式,因此在实践中使用它们需要大量的计算方法。本文解释了一些用于使稳定定律在实际问题中有用的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
31
期刊最新文献
Neuroimaging statistical approaches for determining neural correlates of Alzheimer's disease via positron emission tomography imaging. A spectrum of explainable and interpretable machine learning approaches for genomic studies Functional neuroimaging in the era of Big Data and Open Science: A modern overview Information criteria for model selection Data Integration in Causal Inference.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1