Evaluation of two sample preparation methods for the determination of cadmium, nickel and lead in natural foods by Graphite Furnace Atomic Absorption Spectrophotometry
David Romero-Estévez, G. Yánez-Jácome, Karina Simbaña-Farinango, Pamela Y. Vélez-Terreros, H. Navarrete
{"title":"Evaluation of two sample preparation methods for the determination of cadmium, nickel and lead in natural foods by Graphite Furnace Atomic Absorption Spectrophotometry","authors":"David Romero-Estévez, G. Yánez-Jácome, Karina Simbaña-Farinango, Pamela Y. Vélez-Terreros, H. Navarrete","doi":"10.11144/javeriana.sc24-3.eots","DOIUrl":null,"url":null,"abstract":"Environmental pollution allows heavy metals to interact with ecosystems, bioaccumulating and passing through the food chain. Animals and human scan consume contaminated species and reach toxic and harmful concentrations in their organisms. While there are international regulatory frameworks for heavy metal contents, these are not always known or suitable for local conditions. This situation calls for the development of locally-applicable analytical methods for the determination of heavy metal concentrations in common vegetal and animal food products. Two established methods (AOAC999.11, based on sample drying and calcination, and IPNAC-06-00, based on microwave-assisted acid digestion) were comparatively tested at the CESAQ-PUCE laboratory in Quito, Ecuador, to determine their suitability. Sample matrices used were non industrial, non-organic tomato, lettuce, and beef commonly found in local markets. Heavy metals tested were cadmium, nickel, and lead. Test guidelines and comparative parameters were based on AOAC(2002) and included quantification limits, repeatability variation coefficients, intermediate precision percentages, accuracy and calculated expanded uncertainties. Unlike method AOAC999.11, method IPNAC 06-00 performance for all parameters was with in the range of recommended expected values as per AOAC, and was therefore deemed more suitable to be applied under the local CESAQ-PUCE laboratory conditions. The validation of method IPNAC-06-00 demonstrated its local applicability. In addition, IPNAC 06-00 can beused by similar laboratories to assess contaminants concentrations and improve the base line information concerning human exposure to toxic metals.","PeriodicalId":39200,"journal":{"name":"Universitas Scientiarum","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.11144/javeriana.sc24-3.eots","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universitas Scientiarum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11144/javeriana.sc24-3.eots","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 3
Abstract
Environmental pollution allows heavy metals to interact with ecosystems, bioaccumulating and passing through the food chain. Animals and human scan consume contaminated species and reach toxic and harmful concentrations in their organisms. While there are international regulatory frameworks for heavy metal contents, these are not always known or suitable for local conditions. This situation calls for the development of locally-applicable analytical methods for the determination of heavy metal concentrations in common vegetal and animal food products. Two established methods (AOAC999.11, based on sample drying and calcination, and IPNAC-06-00, based on microwave-assisted acid digestion) were comparatively tested at the CESAQ-PUCE laboratory in Quito, Ecuador, to determine their suitability. Sample matrices used were non industrial, non-organic tomato, lettuce, and beef commonly found in local markets. Heavy metals tested were cadmium, nickel, and lead. Test guidelines and comparative parameters were based on AOAC(2002) and included quantification limits, repeatability variation coefficients, intermediate precision percentages, accuracy and calculated expanded uncertainties. Unlike method AOAC999.11, method IPNAC 06-00 performance for all parameters was with in the range of recommended expected values as per AOAC, and was therefore deemed more suitable to be applied under the local CESAQ-PUCE laboratory conditions. The validation of method IPNAC-06-00 demonstrated its local applicability. In addition, IPNAC 06-00 can beused by similar laboratories to assess contaminants concentrations and improve the base line information concerning human exposure to toxic metals.