Using Model Averaging to Determine Suitable Risk Measure Estimates

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2021-06-17 DOI:10.1080/10920277.2021.1911668
T. Miljkovic, B. Grün
{"title":"Using Model Averaging to Determine Suitable Risk Measure Estimates","authors":"T. Miljkovic, B. Grün","doi":"10.1080/10920277.2021.1911668","DOIUrl":null,"url":null,"abstract":"Recent research in loss modeling resulted in a growing number of classes of statistical models as well as additional models being proposed within each class. Empirical results indicate that a range of models within or between model classes perform similarly well, as measured by goodness-of-fit or information criteria, when fitted to the same data set. This leads to model uncertainty and makes model selection a challenging task. This problem is particularly virulent if the resulting risk measures vary greatly between and within the model classes. We propose an approach to estimate risk measures that accounts for model selection uncertainty based on model averaging. We exemplify the application of the approach considering the class of composite models. This application considers 196 different left-truncated composite models previously used in the literature for loss modeling and arrives at point estimates for the risk measures that take model uncertainty into account. A simulation study highlights the benefits of this approach. The data set on Norwegian fire losses is used to illustrate the proposed methodology.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10920277.2021.1911668","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10920277.2021.1911668","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

Recent research in loss modeling resulted in a growing number of classes of statistical models as well as additional models being proposed within each class. Empirical results indicate that a range of models within or between model classes perform similarly well, as measured by goodness-of-fit or information criteria, when fitted to the same data set. This leads to model uncertainty and makes model selection a challenging task. This problem is particularly virulent if the resulting risk measures vary greatly between and within the model classes. We propose an approach to estimate risk measures that accounts for model selection uncertainty based on model averaging. We exemplify the application of the approach considering the class of composite models. This application considers 196 different left-truncated composite models previously used in the literature for loss modeling and arrives at point estimates for the risk measures that take model uncertainty into account. A simulation study highlights the benefits of this approach. The data set on Norwegian fire losses is used to illustrate the proposed methodology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用模型平均来确定合适的风险度量估计
最近对损失建模的研究导致越来越多的统计模型类别以及在每个类别中提出的附加模型。经验结果表明,当拟合到相同的数据集时,通过拟合优度或信息标准来衡量,模型类内或模型类之间的一系列模型表现相似。这导致了模型的不确定性,并使模型选择成为一项具有挑战性的任务。如果产生的风险度量在模型类之间和模型类内部变化很大,那么这个问题就会特别严重。我们提出了一种估算风险度量的方法,该方法考虑了基于模型平均的模型选择不确定性。我们举例说明了该方法在复合模型类中的应用。该应用程序考虑了文献中先前用于损失建模的196种不同的左截断复合模型,并对考虑模型不确定性的风险度量进行了点估计。一项模拟研究强调了这种方法的好处。关于挪威火灾损失的数据集用于说明所提议的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Intentions to move abroad among medical students: a cross-sectional study to investigate determinants and opinions. Analysis of Medical Rehabilitation Needs of 2023 Kahramanmaraş Earthquake Victims: Adıyaman Example. Efficacy of whole body vibration on fascicle length and joint angle in children with hemiplegic cerebral palsy. The change process questionnaire (CPQ): A psychometric validation. Psychosexual dysfunction in male patients with cannabis dependence and synthetic cannabinoid dependence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1