Failure Characteristics and Strength Model of Composite Rock Samples in Contact Zone Under Compression

IF 1.2 4区 工程技术 Q3 MINING & MINERAL PROCESSING Archives of Mining Sciences Pub Date : 2023-07-20 DOI:10.24425/ams.2020.133197
Qihu Wang, Jie Wang, Ye Yicheng, Wei Jiang, N. Yao
{"title":"Failure Characteristics and Strength Model of Composite Rock Samples in Contact Zone Under Compression","authors":"Qihu Wang, Jie Wang, Ye Yicheng, Wei Jiang, N. Yao","doi":"10.24425/ams.2020.133197","DOIUrl":null,"url":null,"abstract":"Significant differences in the physical and mechanical properties exist between the rock masses on two sides of an ore-rock contact zone, which the production tunnels of an underground mine must pass through. Compared with a single rock mass, the mechanical behavior of the contact zone composite rock comprising two types of rock is more complex. In order to predict the overall strength of the composite rock with different contact angles, iron ore-marble composite rock sample uniaxial compression tests were conducted. The results showed that composite rock samples with different contact angles failed in two different modes under compression. The strengths of the composite rock samples were lower than those of both the pure iron ore samples and pure marble samples, and were also related to the contact angle. According to the stress-strain relationship of the contact surface in the composite rock sample, there were constraint stresses on the contact surface between the two types of rock medium in the composite rock samples. This stress state could reveal the effect of the constraint stress in the composite rock samples with different contact angles on their strengths. Based on the Mohr-Coulomb criterion, a strength model of the composite rock considering the constraint stress on the contact surface was constructed, which could provide a theoretical basis for stability researches and designs of contact zone tunnels.","PeriodicalId":55468,"journal":{"name":"Archives of Mining Sciences","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24425/ams.2020.133197","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 3

Abstract

Significant differences in the physical and mechanical properties exist between the rock masses on two sides of an ore-rock contact zone, which the production tunnels of an underground mine must pass through. Compared with a single rock mass, the mechanical behavior of the contact zone composite rock comprising two types of rock is more complex. In order to predict the overall strength of the composite rock with different contact angles, iron ore-marble composite rock sample uniaxial compression tests were conducted. The results showed that composite rock samples with different contact angles failed in two different modes under compression. The strengths of the composite rock samples were lower than those of both the pure iron ore samples and pure marble samples, and were also related to the contact angle. According to the stress-strain relationship of the contact surface in the composite rock sample, there were constraint stresses on the contact surface between the two types of rock medium in the composite rock samples. This stress state could reveal the effect of the constraint stress in the composite rock samples with different contact angles on their strengths. Based on the Mohr-Coulomb criterion, a strength model of the composite rock considering the constraint stress on the contact surface was constructed, which could provide a theoretical basis for stability researches and designs of contact zone tunnels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
接触区复合岩石试样压缩破坏特征及强度模型
地下矿山生产巷道必须经过的矿岩接触带两侧岩体的物理力学性质存在显著差异。与单一岩体相比,由两类岩体组成的接触带复合岩体的力学行为更为复杂。为了预测不同接触角下复合岩石的整体强度,进行了铁矿-大理岩复合岩石试样单轴压缩试验。结果表明:不同接触角的复合岩样在压缩作用下呈现两种不同的破坏模式。复合岩样强度低于纯铁矿和纯大理岩,且与接触角有关。根据复合岩样中接触面的应力-应变关系可知,复合岩样中两种岩石介质之间的接触面存在约束应力。这种应力状态可以揭示不同接触角复合岩样中约束应力对其强度的影响。基于Mohr-Coulomb准则,建立了考虑接触面约束应力的复合岩石强度模型,可为接触面隧道稳定性研究和设计提供理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Archives of Mining Sciences
Archives of Mining Sciences 工程技术-矿业与矿物加工
CiteScore
2.40
自引率
16.70%
发文量
0
审稿时长
20 months
期刊介绍: Archives of Mining Sciences (AMS) is concerned with original research, new developments and case studies in mining sciences and energy, civil engineering and environmental engineering. The journal provides an international forum for the publication of high quality research results in: mining technologies, mineral processing, stability of mine workings, mining machine science, ventilation systems, rock mechanics, termodynamics, underground storage of oil and gas, mining and engineering geology, geotechnical engineering, tunnelling, design and construction of tunnels, design and construction on mining areas, mining geodesy, environmental protection in mining, revitalisation of postindustrial areas. Papers are welcomed on all relevant topics and especially on theoretical developments, analytical methods, numerical methods, rock testing, site investigation, and case studies.
期刊最新文献
The Influence of Geotechnical, Geological and Mining Factors on the Formation of Sinkholes at Lubambe Mine, Zambia The Influence of Rope Guide Sleeve Clearance on the Lateral Oscillation of Rope Guided Conveyance in Mine Hoist System caused by the Aerodynamic Force Injection Micropile Bar Fatigue Resistance at Loads Lower and Greater than the Yield Strength of Steel Strength and Crack Propagation Analysis of Layered Backfill Based on Energy Theory Analysis of Factors Influencing Carbon Footprint Reduction in Construction Projects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1