Modelling and characterisation of a magneto-rheological elastomer isolator device under impact loadings using interpolated multiple adaptive neuro fuzzy inference system structure
M. S. Rahmat, K. Hudha, Z. A. Kadir, N. H. Amer, N. Nuri, S. Abdullah
{"title":"Modelling and characterisation of a magneto-rheological elastomer isolator device under impact loadings using interpolated multiple adaptive neuro fuzzy inference system structure","authors":"M. S. Rahmat, K. Hudha, Z. A. Kadir, N. H. Amer, N. Nuri, S. Abdullah","doi":"10.1504/ijmsi.2019.10024784","DOIUrl":null,"url":null,"abstract":"This paper presents the modelling and characterisation of a magneto-rheological elastomer isolator device (MREID) under impact loading using the adaptive neuro-fuzzy inference system (ANFIS) technique. The characterisation of an MREID under impact loading was performed using an impact pendulum test rig, and the data obtained from the experimental work was processed in form of force-velocity and force-displacement characteristics. In order to predict MREID behaviour in simulation analysis, multiple ANFIS models were proposed. A single ANFIS model represented a single kinetic energy produced by the impact mass used in experimental work. The experimental data was then used to train the ANFIS in predicting MREID behaviour and validating its performance. For verification, the prediction model, a parametric model (namely, the modified Bouc-Wen model) was developed, and the models were compared. The proposed interpolated multiple ANFIS model predicted the behaviour of the MREID with a high level of accuracy. The proposed model produced a better prediction than the modified Bouc-Wen model.","PeriodicalId":39035,"journal":{"name":"International Journal of Materials and Structural Integrity","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials and Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijmsi.2019.10024784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3
Abstract
This paper presents the modelling and characterisation of a magneto-rheological elastomer isolator device (MREID) under impact loading using the adaptive neuro-fuzzy inference system (ANFIS) technique. The characterisation of an MREID under impact loading was performed using an impact pendulum test rig, and the data obtained from the experimental work was processed in form of force-velocity and force-displacement characteristics. In order to predict MREID behaviour in simulation analysis, multiple ANFIS models were proposed. A single ANFIS model represented a single kinetic energy produced by the impact mass used in experimental work. The experimental data was then used to train the ANFIS in predicting MREID behaviour and validating its performance. For verification, the prediction model, a parametric model (namely, the modified Bouc-Wen model) was developed, and the models were compared. The proposed interpolated multiple ANFIS model predicted the behaviour of the MREID with a high level of accuracy. The proposed model produced a better prediction than the modified Bouc-Wen model.