Structural characterization of an alkali-extracted polysaccharide from Dioscorea opposita Thunb. with initial studies on its anti-inflammatory activity

IF 1.2 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Carbohydrate Chemistry Pub Date : 2021-01-01 DOI:10.1080/07328303.2021.2009503
Xuewei Jia , Xuanjing Wang , Yuanshang Liu , Yiyan Sun , Bingjie Ma , Zhenjie Li , Chunping Xu
{"title":"Structural characterization of an alkali-extracted polysaccharide from Dioscorea opposita Thunb. with initial studies on its anti-inflammatory activity","authors":"Xuewei Jia ,&nbsp;Xuanjing Wang ,&nbsp;Yuanshang Liu ,&nbsp;Yiyan Sun ,&nbsp;Bingjie Ma ,&nbsp;Zhenjie Li ,&nbsp;Chunping Xu","doi":"10.1080/07328303.2021.2009503","DOIUrl":null,"url":null,"abstract":"<div><p>An alkali-extracted polysaccharide (HY-B) was isolated and purified from <em>Dioscorea opposita</em> Thunb. (Huai Yam). Its chemical structure was analyzed with FT-IR, GC-MS and 1 D, 2 D-NMR spectrometry. It was proved that HY-B is mainly composed of α-1,4-linked glucose, which is similar to starch, but the starch-iodine color test proved that it was not starch. The chain conformation of HY-B was analyzed by SEC-MALLS-RI and TEM, indicated that HY-B exists in a random coil conformation. Its molecular weight is 18.7 kDa, and the molecular size is about 100 nm. MTT assays indicated that HY-B was nontoxic to RAW 264.7 cells <em>in vitro</em>. The results of anti-inflammatory studies showed that HY-B could inhibit the production of NO and TNF-α in RAW 264.7 macrophage stimulated by lipopolysaccharides (LPSs). This work provided the important information about the anti-inflammatory active component of Huai Yam and its potential applications in the food and health industries.</p></div>","PeriodicalId":15311,"journal":{"name":"Journal of Carbohydrate Chemistry","volume":"40 6","pages":"Pages 308-324"},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Carbohydrate Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S073283032200146X","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

An alkali-extracted polysaccharide (HY-B) was isolated and purified from Dioscorea opposita Thunb. (Huai Yam). Its chemical structure was analyzed with FT-IR, GC-MS and 1 D, 2 D-NMR spectrometry. It was proved that HY-B is mainly composed of α-1,4-linked glucose, which is similar to starch, but the starch-iodine color test proved that it was not starch. The chain conformation of HY-B was analyzed by SEC-MALLS-RI and TEM, indicated that HY-B exists in a random coil conformation. Its molecular weight is 18.7 kDa, and the molecular size is about 100 nm. MTT assays indicated that HY-B was nontoxic to RAW 264.7 cells in vitro. The results of anti-inflammatory studies showed that HY-B could inhibit the production of NO and TNF-α in RAW 264.7 macrophage stimulated by lipopolysaccharides (LPSs). This work provided the important information about the anti-inflammatory active component of Huai Yam and its potential applications in the food and health industries.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
山药碱提多糖的结构表征。对其抗炎活性进行了初步研究
从山药中分离纯化碱提多糖(HY-B)。(怀山药)。采用FT-IR、GC-MS和1d、2d - nmr对其化学结构进行了分析。证实HY-B主要由α-1,4-链葡萄糖组成,与淀粉相似,但淀粉碘色试验证明它不是淀粉。用SEC-MALLS-RI和TEM分析了HY-B的链构象,表明HY-B以随机线圈构象存在。分子量为18.7 kDa,分子量约为100 nm。MTT实验表明HY-B对体外培养的RAW 264.7细胞无毒性。抗炎实验结果表明,HY-B可抑制脂多糖刺激的RAW 264.7巨噬细胞NO和TNF-α的产生。为研究怀山药抗炎活性成分及其在食品和保健领域的潜在应用提供了重要信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Carbohydrate Chemistry
Journal of Carbohydrate Chemistry 化学-生化与分子生物学
CiteScore
2.10
自引率
0.00%
发文量
20
审稿时长
1 months
期刊介绍: The Journal of Carbohydrate Chemistry serves as an international forum for research advances involving the chemistry and biology of carbohydrates. The following aspects are considered to fall within the scope of this journal: -novel synthetic methods involving carbohydrates, oligosaccharides, and glycoconjugates- the use of chemical methods to address aspects of glycobiology- spectroscopic and crystallographic structure studies of carbohydrates- computational and molecular modeling studies- physicochemical studies involving carbohydrates and the chemistry and biochemistry of carbohydrate polymers.
期刊最新文献
The impacts of benzoyl and benzyl groups on the non-covalent interactions and electronic properties of glycosyl acceptors Chemical modifications of xylan from sugarcane bagasse and their regulatory effects on gut microbiota in mice Stereoselective synthesis of 3-sulfone sugars via cobalt catalysis Synthesis of glycosylphosphatidylinositol analogues with an unnatural β-D-glucosamine-(1→6)-myo-inositol motif Synthesis of 2,3,4-13C-labeled isoflavone 7-O-glucosides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1