Subtidal to intertidal deposits in a mixed clastic-carbonate epicontinental seaway, the Windy Hill Sandstone and Upper Sundance Formation (Oxfordian), Wyoming, U.S.A.

IF 2 4区 地球科学 Q1 GEOLOGY Journal of Sedimentary Research Pub Date : 2023-07-14 DOI:10.2110/jsr.2022.061
A. Wroblewski, J. Schueth
{"title":"Subtidal to intertidal deposits in a mixed clastic-carbonate epicontinental seaway, the Windy Hill Sandstone and Upper Sundance Formation (Oxfordian), Wyoming, U.S.A.","authors":"A. Wroblewski, J. Schueth","doi":"10.2110/jsr.2022.061","DOIUrl":null,"url":null,"abstract":"Oxfordian deposits in northern Colorado and Wyoming, USA preserve proximal, intertidal, clastic, coastal deposits and distal, offshore to nearshore, subtidal bioclastic facies that accumulated during a forced regression of the Jurassic epeiric Sea. This contrasts with the common association between tidal deposits, carbonate facies, and rising sea level common to many depositional models of mixed clastic/carbonate systems. Ichnology, sedimentology, and architecture of these deposits were documented along a 460 km outcrop transect to test previous depositional interpretations and decipher the mechanisms driving the change from proximal, siliciclastic, intertidal flats to distal, bioclastic, subtidal macroforms. In southeastern Wyoming, the Windy Hill Sandstone (WH) is composed of very fine, SiO2-dominated, intertidal facies that truncate offshore to lower shoreface, storm-dominated deposits of the Redwater Shale Member (RS) of the Sundance Fm. Eolian and small fluvial systems delivered sand to the coastline after subaerial erosion reworked it from older, uplifted Jurassic strata onshore. The regional and time-transgressive J-5 unconformity separating the WH from the RS is readily identifiable using ichnological and sedimentological criteria. In the Wind River and Bighorn basins to the north, the Upper Sundance Fm (USF) is time-equivalent to the WH but is composed of glauconitic, silt-prone sandstone and meter to decimeter-scale, bioclastic, cross-bedded sandstone bodies. The abundance of molluscan shell material and limited volume of siliciclastic sediment in the geographically widespread outcrops suggests that nearby, marine shoals were the source of the coarse-grained material. Bioclastic, cross-stratified sandstone bodies represent two architectural elements: 1) coarsening-upward bodies with seaward-dipping foresets arranged into complexes bound by seaward-directed bounding surfaces interpreted to represent subtidal compound dunes and 2) landward- and laterally accreting tidal inlet fills composed of meter-scale, landward-accreting bodies with some landward-directed current ripples. The presence of transgressive tidal inlets supports previous interpretations that the WH and USF record high frequency transgressions superimposed on a tectonically-driven forced regression.","PeriodicalId":17044,"journal":{"name":"Journal of Sedimentary Research","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sedimentary Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2110/jsr.2022.061","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Oxfordian deposits in northern Colorado and Wyoming, USA preserve proximal, intertidal, clastic, coastal deposits and distal, offshore to nearshore, subtidal bioclastic facies that accumulated during a forced regression of the Jurassic epeiric Sea. This contrasts with the common association between tidal deposits, carbonate facies, and rising sea level common to many depositional models of mixed clastic/carbonate systems. Ichnology, sedimentology, and architecture of these deposits were documented along a 460 km outcrop transect to test previous depositional interpretations and decipher the mechanisms driving the change from proximal, siliciclastic, intertidal flats to distal, bioclastic, subtidal macroforms. In southeastern Wyoming, the Windy Hill Sandstone (WH) is composed of very fine, SiO2-dominated, intertidal facies that truncate offshore to lower shoreface, storm-dominated deposits of the Redwater Shale Member (RS) of the Sundance Fm. Eolian and small fluvial systems delivered sand to the coastline after subaerial erosion reworked it from older, uplifted Jurassic strata onshore. The regional and time-transgressive J-5 unconformity separating the WH from the RS is readily identifiable using ichnological and sedimentological criteria. In the Wind River and Bighorn basins to the north, the Upper Sundance Fm (USF) is time-equivalent to the WH but is composed of glauconitic, silt-prone sandstone and meter to decimeter-scale, bioclastic, cross-bedded sandstone bodies. The abundance of molluscan shell material and limited volume of siliciclastic sediment in the geographically widespread outcrops suggests that nearby, marine shoals were the source of the coarse-grained material. Bioclastic, cross-stratified sandstone bodies represent two architectural elements: 1) coarsening-upward bodies with seaward-dipping foresets arranged into complexes bound by seaward-directed bounding surfaces interpreted to represent subtidal compound dunes and 2) landward- and laterally accreting tidal inlet fills composed of meter-scale, landward-accreting bodies with some landward-directed current ripples. The presence of transgressive tidal inlets supports previous interpretations that the WH and USF record high frequency transgressions superimposed on a tectonically-driven forced regression.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
美国怀俄明州风山砂岩和上圣丹斯组(牛津地区)陆表海道碎屑-碳酸盐混合的潮下至潮间带沉积
美国科罗拉多州北部和怀俄明州的牛津沉积保留了近端、潮间带、碎屑、海岸沉积和远端、近海到近岸的潮下生物碎屑相,这些沉积相是在侏罗纪陆海强退过程中积累的。这与潮汐沉积、碳酸盐相和海平面上升之间的共同联系形成了对比,这是许多混合碎屑/碳酸盐体系沉积模型中常见的。沿着460公里的露头样带记录了这些沉积物的湖相学、沉积学和结构,以测试先前的沉积解释,并破译驱动从近端、硅质碎屑、潮间带到远端、生物碎屑、潮下宏观形态变化的机制。在怀俄明州东南部,Windy Hill砂岩(WH)由非常细的、SiO2为主的潮间带相组成,这些相截断了Sundance Fm的Redwater页岩段(RS)的近海到下滨面,风暴为主的沉积物。在陆上侵蚀将其从陆上较老的、隆起的侏罗纪地层改造后,Eolian和小型河流系统将沙子输送到海岸线。使用考古学和沉积学标准,可以很容易地识别将WH与RS分离的区域和时间海侵J-5不整合。在北部的Wind河和Bighorn盆地,上圣丹斯组(USF)在时间上相当于WH,但由海绿石、易泥质砂岩和米到分米尺度的生物碎屑交错层砂岩体组成。在地理分布广泛的露头中,软体动物外壳材料的丰富和硅碎屑沉积物的有限体积表明,附近的海洋浅滩是粗粒物质的来源。生物碎屑、交叉分层的砂岩体代表了两个建筑元素:1)向上变粗的岩体,具有向海倾斜的前缘,排列成由向海边界表面结合的复合体,被解释为代表潮下复合沙丘,带有一些陆向直流波纹的陆向吸积体。海侵潮汐入口的存在支持了之前的解释,即WH和USF记录了叠加在构造驱动的强迫回归上的高频海侵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
50
审稿时长
3 months
期刊介绍: The journal is broad and international in scope and welcomes contributions that further the fundamental understanding of sedimentary processes, the origin of sedimentary deposits, the workings of sedimentary systems, and the records of earth history contained within sedimentary rocks.
期刊最新文献
Recognition of cross-shore dynamics of longshore bars in upper-shoreface deposits of prograding sandy coastal barriers Deep-Water Fan Hierarchy: Assumptions, Evidence, and Numerical Modelling Analysis Anatomy of Niger and Benue river sediments from clay to granule: grain-size dependence and provenance budgets Random and time-persistent depositional processes in turbidite successions: an example from the marine deep-water Aoshima Formation (Neogene, Kyushu Island, southwest Japan) Rapid diagenesis and microbial biosignature degradation in spring carbonates from Crystal Geyser, Utah, U.S.A.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1