{"title":"The EAS approach for graphical selection consistency in vector autoregression models","authors":"Jonathan P. Williams, Yuying Xie, Jan Hannig","doi":"10.1002/cjs.11726","DOIUrl":null,"url":null,"abstract":"<p>As evidenced by various recent and significant papers within the frequentist literature, along with numerous applications in macroeconomics, genomics, and neuroscience, there continues to be substantial interest in understanding the theoretical estimation properties of high-dimensional vector autoregression (VAR) models. To date, however, while Bayesian VAR (BVAR) models have been developed and studied empirically (primarily in the econometrics literature), there exist very few theoretical investigations of the repeated-sampling properties for BVAR models in the literature, and there exist no generalized fiducial investigations of VAR models. In this direction, we construct methodology via the <math>\n <mrow>\n <mi>ε</mi>\n </mrow></math>-<i>admissible</i> subsets (EAS) approach for inference based on a generalized fiducial distribution of relative model probabilities over all sets of active/inactive components (graphs) of the VAR transition matrix. We provide a mathematical proof of <i>pairwise</i> and <i>strong</i> graphical selection consistency for the EAS approach for stable VAR(1) models, and demonstrate empirically that it is an effective strategy in high-dimensional settings.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11726","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11726","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 8
Abstract
As evidenced by various recent and significant papers within the frequentist literature, along with numerous applications in macroeconomics, genomics, and neuroscience, there continues to be substantial interest in understanding the theoretical estimation properties of high-dimensional vector autoregression (VAR) models. To date, however, while Bayesian VAR (BVAR) models have been developed and studied empirically (primarily in the econometrics literature), there exist very few theoretical investigations of the repeated-sampling properties for BVAR models in the literature, and there exist no generalized fiducial investigations of VAR models. In this direction, we construct methodology via the -admissible subsets (EAS) approach for inference based on a generalized fiducial distribution of relative model probabilities over all sets of active/inactive components (graphs) of the VAR transition matrix. We provide a mathematical proof of pairwise and strong graphical selection consistency for the EAS approach for stable VAR(1) models, and demonstrate empirically that it is an effective strategy in high-dimensional settings.
期刊介绍:
The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics.
The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.