{"title":"Recent developments in dislocation pattern dynamics: Current opinions and perspectives","authors":"Dandan Lyu, Shaofan Li","doi":"10.1142/S2424913018400027","DOIUrl":null,"url":null,"abstract":"The development of crystal plasticity theory based on dislocation patterns dynamics has been an outstanding problem in materials science and condensed matter of physics. Dislocation is the origin of crystal plasticity, and it is both the individual dislocation behavior as well as the aggregated dislocations behaviors that govern the plastic flow. The interactions among dislocations are complex statistical and stochastic events, in which the spontaneous emergence of organized dislocation patterns formations is the most critical and intriguing events. Dislocation patterns consist of quasi-periodic dislocation-rich and dislocation poor regions, e.g. cells, veins, labyrinths, ladders structures, etc. during cyclic loadings. Dislocation patterns have prominent and decisive effects on work hardening and plastic strain localization, and thus these dislocation micro-structures are responsible to material properties at macroscale. This paper reviews the recent developments of experimental observation, physical modeling, and computer modeling on dislocation microstructure. In particular, we focus on examining the mechanism towards plastic deformation. The progress and limitations of different experiments and modeling approaches are discussed and compared. Finally, we share our perspectives on current issues and future challenges in both experimental, analytical modeling, and computational aspects of dislocation pattern dynamics.","PeriodicalId":36070,"journal":{"name":"Journal of Micromechanics and Molecular Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2424913018400027","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Molecular Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2424913018400027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 6
Abstract
The development of crystal plasticity theory based on dislocation patterns dynamics has been an outstanding problem in materials science and condensed matter of physics. Dislocation is the origin of crystal plasticity, and it is both the individual dislocation behavior as well as the aggregated dislocations behaviors that govern the plastic flow. The interactions among dislocations are complex statistical and stochastic events, in which the spontaneous emergence of organized dislocation patterns formations is the most critical and intriguing events. Dislocation patterns consist of quasi-periodic dislocation-rich and dislocation poor regions, e.g. cells, veins, labyrinths, ladders structures, etc. during cyclic loadings. Dislocation patterns have prominent and decisive effects on work hardening and plastic strain localization, and thus these dislocation micro-structures are responsible to material properties at macroscale. This paper reviews the recent developments of experimental observation, physical modeling, and computer modeling on dislocation microstructure. In particular, we focus on examining the mechanism towards plastic deformation. The progress and limitations of different experiments and modeling approaches are discussed and compared. Finally, we share our perspectives on current issues and future challenges in both experimental, analytical modeling, and computational aspects of dislocation pattern dynamics.