{"title":"A state-space approach to time-varying reduced-rank regression","authors":"B. Brune, W. Scherrer, E. Bura","doi":"10.1080/07474938.2022.2073743","DOIUrl":null,"url":null,"abstract":"Abstract We propose a new approach to reduced-rank regression that allows for time-variation in the regression coefficients. The Kalman filter based estimation allows for usage of standard methods and easy implementation of our procedure. The EM-algorithm ensures convergence to a local maximum of the likelihood. Our estimation approach in time-varying reduced-rank regression performs well in simulations, with amplified competitive advantage in time series that experience large structural changes. We illustrate the performance of our approach with a simulation study and two applications to stock index and Covid-19 case data.","PeriodicalId":11438,"journal":{"name":"Econometric Reviews","volume":"41 1","pages":"895 - 917"},"PeriodicalIF":0.8000,"publicationDate":"2022-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Reviews","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/07474938.2022.2073743","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract We propose a new approach to reduced-rank regression that allows for time-variation in the regression coefficients. The Kalman filter based estimation allows for usage of standard methods and easy implementation of our procedure. The EM-algorithm ensures convergence to a local maximum of the likelihood. Our estimation approach in time-varying reduced-rank regression performs well in simulations, with amplified competitive advantage in time series that experience large structural changes. We illustrate the performance of our approach with a simulation study and two applications to stock index and Covid-19 case data.
期刊介绍:
Econometric Reviews is widely regarded as one of the top 5 core journals in econometrics. It probes the limits of econometric knowledge, featuring regular, state-of-the-art single blind refereed articles and book reviews. ER has been consistently the leader and innovator in its acclaimed retrospective and critical surveys and interchanges on current or developing topics. Special issues of the journal are developed by a world-renowned editorial board. These bring together leading experts from econometrics and beyond. Reviews of books and software are also within the scope of the journal. Its content is expressly intended to reach beyond econometrics and advanced empirical economics, to statistics and other social sciences.