Improving Accuracy of Recommender Systems using Social Network Information and Longitudinal Data

B. Hassanpour, N. Abdolvand, S. R. Harandi
{"title":"Improving Accuracy of Recommender Systems using Social Network Information and Longitudinal Data","authors":"B. Hassanpour, N. Abdolvand, S. R. Harandi","doi":"10.22044/JADM.2020.7326.1871","DOIUrl":null,"url":null,"abstract":"The rapid development of technology, the Internet, and the development of electronic commerce have led to the emergence of recommender systems. These systems will assist the users in finding and selecting their desired items. The accuracy of the advice in recommender systems is one of the main challenges of these systems. Regarding the fuzzy systems capabilities in determining the borders of user interests, it seems reasonable to combine it with social networks information and the factor of time. Hence, this study, for the first time, tries to assess the efficiency of the recommender systems by combining fuzzy logic, longitudinal data and social networks information such as tags, friendship, and membership in groups. And the impact of the proposed algorithm for improving the accuracy of recommender systems was studied by specifying the neighborhood and the border between the users’ preferences over time. The results revealed that using longitudinal data in social networks information in memory-based recommender systems improves the accuracy of these systems.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22044/JADM.2020.7326.1871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid development of technology, the Internet, and the development of electronic commerce have led to the emergence of recommender systems. These systems will assist the users in finding and selecting their desired items. The accuracy of the advice in recommender systems is one of the main challenges of these systems. Regarding the fuzzy systems capabilities in determining the borders of user interests, it seems reasonable to combine it with social networks information and the factor of time. Hence, this study, for the first time, tries to assess the efficiency of the recommender systems by combining fuzzy logic, longitudinal data and social networks information such as tags, friendship, and membership in groups. And the impact of the proposed algorithm for improving the accuracy of recommender systems was studied by specifying the neighborhood and the border between the users’ preferences over time. The results revealed that using longitudinal data in social networks information in memory-based recommender systems improves the accuracy of these systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用社会网络信息和纵向数据提高推荐系统的准确性
技术的快速发展、互联网和电子商务的发展导致了推荐系统的出现。这些系统将帮助用户找到和选择他们想要的物品。推荐系统中建议的准确性是这些系统的主要挑战之一。关于模糊系统在确定用户兴趣边界方面的能力,将其与社交网络信息和时间因素相结合似乎是合理的。因此,本研究首次尝试通过结合模糊逻辑、纵向数据和社交网络信息(如标签、友谊和群成员)来评估推荐系统的效率。通过指定用户偏好之间的邻域和边界,研究了所提出的算法对提高推荐系统准确性的影响。结果表明,在基于记忆的推荐系统中使用社交网络中的纵向数据信息可以提高这些系统的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
Nasal Breath Input: Exploring Nasal Breath Input Method for Hands-Free Input by Using a Glasses Type Device with Piezoelectric Elements Sentiment Mining and Analysis over Text Corpora via Complex Deep Learning Naural Architectures An Intelligent Model for Prediction of In-Vitro Fertilization Success using MLP Neural Network and GA Optimization Robust Vein Recognition against Rotation Using Kernel Sparse Representation Improving Speed and Efficiency of Dynamic Programming Methods through Chaos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1