Recent advances in legume protein-based colloidal systems

Q1 Agricultural and Biological Sciences Legume Science Pub Date : 2023-02-01 DOI:10.1002/leg3.185
Mohammad Tarahi, Jasim Ahmed
{"title":"Recent advances in legume protein-based colloidal systems","authors":"Mohammad Tarahi,&nbsp;Jasim Ahmed","doi":"10.1002/leg3.185","DOIUrl":null,"url":null,"abstract":"<p>Developing nature-derived surface-active ingredients with favorable interfacial and functional properties has recently received increasing attention in the food and pharmaceutical industries. Legume proteins are used extensively in food colloidal systems because of their small particle size, high water absorption capability, excellent functional properties (e.g., emulsification, foamability, and gelation), and film formation. There are some limitations in legume proteins, such as high water vapor permeability and fragility, as well as low stability and solubility. Various conventional and innovative processing technologies (e.g., high-pressure homogenization, ultrasonication, and cold plasma processing) have been successfully employed in order to modify the functional and interfacial properties of legume proteins. In this review, the formation and stability of legume protein-based colloidal systems and their applications are discussed.</p>","PeriodicalId":17929,"journal":{"name":"Legume Science","volume":"5 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/leg3.185","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Legume Science","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/leg3.185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Developing nature-derived surface-active ingredients with favorable interfacial and functional properties has recently received increasing attention in the food and pharmaceutical industries. Legume proteins are used extensively in food colloidal systems because of their small particle size, high water absorption capability, excellent functional properties (e.g., emulsification, foamability, and gelation), and film formation. There are some limitations in legume proteins, such as high water vapor permeability and fragility, as well as low stability and solubility. Various conventional and innovative processing technologies (e.g., high-pressure homogenization, ultrasonication, and cold plasma processing) have been successfully employed in order to modify the functional and interfacial properties of legume proteins. In this review, the formation and stability of legume protein-based colloidal systems and their applications are discussed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
豆类蛋白质胶体系统研究进展
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Legume Science
Legume Science Agricultural and Biological Sciences-Plant Science
CiteScore
7.90
自引率
0.00%
发文量
32
审稿时长
6 weeks
期刊最新文献
Impact of Radiofrequency and Microwave Heating on the Nutritional and Antinutritional Properties of Pulses: A Review Detection and Partial Characterization of Polerovirus and Luteovirus Isolates Associated With Lentil and Chickpea in Ethiopia Impact of Drying Methods and pH-Shift + US Modification of Mung Bean Protein on the Stability of Pickering Emulsion Assessment of On-Farm Saved Chickpea (Cicer arietinum L.) Seed Quality in Central Ethiopia Evaluation of Mean Performance and Stability of Lentil Genotypes According to Combination of Additive Main Effects and Multiplicative Interaction, and Best Linear Unbiased Prediction Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1