Optimal Stage for Cryotop Vitrification of Porcine Embryos.

IF 1.2 4区 医学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Cellular reprogramming Pub Date : 2022-06-01 DOI:10.1089/cell.2022.0001
Hongxia Xu, Xuguang Wang, Ruixin Tao, Jiaying Bi, Xu He, Fuquan Zhu, Ke-wei Liu, Yinxue Xu, Juan Li
{"title":"Optimal Stage for Cryotop Vitrification of Porcine Embryos.","authors":"Hongxia Xu, Xuguang Wang, Ruixin Tao, Jiaying Bi, Xu He, Fuquan Zhu, Ke-wei Liu, Yinxue Xu, Juan Li","doi":"10.1089/cell.2022.0001","DOIUrl":null,"url":null,"abstract":"Different development stages of porcine embryos have different tolerance to low temperature. Therefore, we took the porcine embryos after parthenogenetic activation (PA) as the model, to explore the optimal development stage for vitrification during morula (D4), early blastocyst (D5), and expanded blastocyst (D6) after PA (D0). Embryos were observed with microscope and analyzed by different staining after cryo-recovery for 24 hours. The quality of embryos was damaged after vitrification, including embryonic nuclei, DNA, cytoskeleton, and organelles. The re-expansion rate at 24 hours of D5 embryos was significantly higher than those of D4 and D6 embryos (D5 vs. D4 vs. D6, 27.620 ± 0.041 vs. 7.809 ± 0.027 vs. 13.970 ± 0.032, p < 0.05). Therefore, D5 embryos were selected as research objects to explore the effect of vitrification on lipid in vitrified embryos. The results showed that the expression levels of perilipin PLIN3 messenger RNA (mRNA) and triacylglycerol synthesis-related genes AGPAT1 and DGAT mRNA are significantly reduced (p < 0.05). Vitrification affected lipid synthesis, which might have an irreversible impact on embryonic development. In conclusion, our data demonstrated that the optimal stage of vitrification was D5 for early blastocysts.","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular reprogramming","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/cell.2022.0001","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Different development stages of porcine embryos have different tolerance to low temperature. Therefore, we took the porcine embryos after parthenogenetic activation (PA) as the model, to explore the optimal development stage for vitrification during morula (D4), early blastocyst (D5), and expanded blastocyst (D6) after PA (D0). Embryos were observed with microscope and analyzed by different staining after cryo-recovery for 24 hours. The quality of embryos was damaged after vitrification, including embryonic nuclei, DNA, cytoskeleton, and organelles. The re-expansion rate at 24 hours of D5 embryos was significantly higher than those of D4 and D6 embryos (D5 vs. D4 vs. D6, 27.620 ± 0.041 vs. 7.809 ± 0.027 vs. 13.970 ± 0.032, p < 0.05). Therefore, D5 embryos were selected as research objects to explore the effect of vitrification on lipid in vitrified embryos. The results showed that the expression levels of perilipin PLIN3 messenger RNA (mRNA) and triacylglycerol synthesis-related genes AGPAT1 and DGAT mRNA are significantly reduced (p < 0.05). Vitrification affected lipid synthesis, which might have an irreversible impact on embryonic development. In conclusion, our data demonstrated that the optimal stage of vitrification was D5 for early blastocysts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
猪胚胎冷冻玻璃化的最佳阶段。
不同发育阶段的猪胚胎对低温的耐受性不同。因此,我们以孤雌激活(PA)后的猪胚胎为模型,探索桑椹胚(D4)、早期胚泡(D5)和PA后膨胀胚泡(D6)玻璃化的最佳发育阶段。冷冻复苏24小时后,用显微镜观察胚胎并通过不同染色进行分析。玻璃化后胚胎的质量受到损害,包括胚胎细胞核、DNA、细胞骨架和细胞器。D5胚胎在24小时时的再膨胀率显著高于D4和D6胚胎(D5对D4对D6,27.620 ± 0.041对7.809 ± 0.027对13.970 ± 0.032,p < 因此,选择D5胚胎作为研究对象,探讨玻璃化处理对玻璃化胚胎脂质的影响。结果表明,外脂蛋白PLIN3信使RNA(mRNA)和三酰甘油合成相关基因AGPAT1和DGAT mRNA的表达水平显著降低(p < 0.05)。玻璃化影响脂质合成,这可能对胚胎发育产生不可逆转的影响。总之,我们的数据表明,早期胚泡玻璃化的最佳阶段是D5。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cellular reprogramming
Cellular reprogramming CELL & TISSUE ENGINEERING-BIOTECHNOLOGY & APPLIED MICROBIOLOGY
CiteScore
2.50
自引率
6.20%
发文量
37
审稿时长
3 months
期刊介绍: Cellular Reprogramming is the premier journal dedicated to providing new insights on the etiology, development, and potential treatment of various diseases through reprogramming cellular mechanisms. The Journal delivers information on cutting-edge techniques and the latest high-quality research and discoveries that are transforming biomedical research. Cellular Reprogramming coverage includes: Somatic cell nuclear transfer and reprogramming in early embryos Embryonic stem cells Nuclear transfer stem cells (stem cells derived from nuclear transfer embryos) Generation of induced pluripotent stem (iPS) cells and/or potential for cell-based therapies Epigenetics Adult stem cells and pluripotency.
期刊最新文献
A New Frontier in Tumor Eradication: Harnessing In Vivo Cellular Reprogramming for Durable Cancer Immunotherapy. Deciphering the Sertoli Cell Signaling Pathway with Protein-Protein Interaction, Single-Cell Sequencing, and Gene Ontology. Reprogramming Stars #18: Engineering Cell Fates and Preventing Disease by Repressing Unwanted Plasticity-An Interview with Dr. Moritz Mall. Genome-Scale Analyses Reveal Roadblocks to Monkey Cloning. Rewinding the Tape to Identify Intrinsic Determinants of Reprogramming Potential.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1