Fracture behaviour of concrete with different replacement rates of iron tailings sand based on double-K criterion

IF 1.2 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Frattura ed Integrita Strutturale Pub Date : 2023-03-21 DOI:10.3221/igf-esis.64.11
Yao Zhang, W. Ma, H. Kang, Qiang Li
{"title":"Fracture behaviour of concrete with different replacement rates of iron tailings sand based on double-K criterion","authors":"Yao Zhang, W. Ma, H. Kang, Qiang Li","doi":"10.3221/igf-esis.64.11","DOIUrl":null,"url":null,"abstract":"The article conducts a study on the iron tailings sand concrete's fracture behaviour based on the double-K criterion. Five sets of standard three-point bending beam specimens of concrete with 0%, 25%, 50%, 75% and 100% iron tailings sand replacement river sand respectively were fracture tested, and the P-CMOD and P- ε curves of each set of specimens were measured to determine the pertinent fracture parameters. The specimens were also microscopically tested using scanning electron microscopy and mercury intrusion porosimetry. The results demonstrate that the fracture processes and damage patterns of iron tailings sand concrete and river sand concrete are comparable; the addition of iron tailings sand improves initial cracking load and initial cracking toughness more significantly than unstable cracking load and unstable cracking toughness; the ductility of iron tailings sand concrete is marginally inferior; and the results of microscopic tests demonstrate that the addition of iron tailings sand can improve the morphology and pore structure of the interface transition zone. Therefore, from the assessment of fracture mechanics, iron tailings sand can totally replace river sand in equivalent quantities for concrete preparation, which will provide great potential for the secondary use of iron tailings sand.","PeriodicalId":38546,"journal":{"name":"Frattura ed Integrita Strutturale","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frattura ed Integrita Strutturale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3221/igf-esis.64.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The article conducts a study on the iron tailings sand concrete's fracture behaviour based on the double-K criterion. Five sets of standard three-point bending beam specimens of concrete with 0%, 25%, 50%, 75% and 100% iron tailings sand replacement river sand respectively were fracture tested, and the P-CMOD and P- ε curves of each set of specimens were measured to determine the pertinent fracture parameters. The specimens were also microscopically tested using scanning electron microscopy and mercury intrusion porosimetry. The results demonstrate that the fracture processes and damage patterns of iron tailings sand concrete and river sand concrete are comparable; the addition of iron tailings sand improves initial cracking load and initial cracking toughness more significantly than unstable cracking load and unstable cracking toughness; the ductility of iron tailings sand concrete is marginally inferior; and the results of microscopic tests demonstrate that the addition of iron tailings sand can improve the morphology and pore structure of the interface transition zone. Therefore, from the assessment of fracture mechanics, iron tailings sand can totally replace river sand in equivalent quantities for concrete preparation, which will provide great potential for the secondary use of iron tailings sand.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于双k准则的不同铁尾砂置换率混凝土断裂行为
本文基于双k准则对铁尾矿砂混凝土的断裂行为进行了研究。分别对0%、25%、50%、75%和100%铁尾砂替代河砂的混凝土进行了5组标准三点弯曲梁试件的断裂试验,并测量了每组试件的P- cmod和P- ε曲线,确定了相应的断裂参数。并用扫描电镜和压汞孔隙法对样品进行了显微观察。结果表明:铁尾砂混凝土与河砂混凝土的断裂过程和破坏模式具有可比性;铁尾矿砂的加入对初始开裂载荷和初始开裂韧性的改善作用比不稳定开裂载荷和不稳定开裂韧性的改善作用更显著;铁尾矿砂混凝土延性略差;细观试验结果表明,铁尾矿砂的加入可以改善界面过渡区的形貌和孔隙结构。因此,从断裂力学角度评价,铁尾矿砂完全可以等量替代河砂用于混凝土配制,铁尾矿砂的二次利用潜力巨大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frattura ed Integrita Strutturale
Frattura ed Integrita Strutturale Engineering-Mechanical Engineering
CiteScore
3.40
自引率
0.00%
发文量
114
审稿时长
6 weeks
期刊最新文献
Investigation on Microstructure, Hardness, Wear behavior and Fracture Surface Analysis of Strontium (Sr) and Calcium (Ca) Content A357 Modified Alloy by Statistical Technique Fatigue life investigation of notched TC4 specimens subjected to different patterns of laser shock peening High carbon steel/Inconel 718 bimetallic parts produced via Fused Filament Fabrication and Sintering Microstructure Characterization, Mechanical and Wear Behavior of Silicon Carbide and Neem Leaf Powder Reinforced AL7075 Alloy hybrid MMC’s. Mechanisms for Introduction of Pseudo Ductility in Fiber Reinforced Polymer Composites- A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1