Intracellular zinc mobilization is required for nNOS (+) neuron loss. Role of zinc in the excitotoxic cascade

Q4 Biochemistry, Genetics and Molecular Biology Journal of Cellular Neuroscience and Oxidative Stress Pub Date : 2019-06-21 DOI:10.37212/JCNOS.584662
A. Granzotto
{"title":"Intracellular zinc mobilization is required for nNOS (+) neuron loss. Role of zinc in the excitotoxic cascade","authors":"A. Granzotto","doi":"10.37212/JCNOS.584662","DOIUrl":null,"url":null,"abstract":"NMDA receptor (NMDAR) overstimulation by glutamate promotes massive calcium (Ca2+) entry and initiates a cascade of events leading to the overproduction of Reactive Oxygen Species (ROS), mitochondrial dysfunction, intraneuronal zinc (Zn2+) mobilization, and, ultimately, neuronal demise (Choi 1992).  This glutamate-driven form of neuronal death has been described as excitotoxicity (Olney 1969).  NADPH-diaphorase neurons [nNOS (+) neurons] are a subpopulation of nitric-oxide synthase-overexpressing interneurons that is spared from the NMDAR-mediated neuronal death (Koh and Choi, 1988).  The mechanisms underlying the reduced vulnerability of nNOS (+) neurons to NMDAR-driven neuronal death are still largely unexplored.  In the talk, we will discuss the mechanisms that are involved in the reduced vulnerability of nNOS (+) neurons.  Differences between nNOS (+) and nNOS (-) neurons as far as changes in intracellular Ca2+ levels, mitochondrial functioning, ROS production as well as the intraneuronal accumulation of Zn2+ were investigated.  We found that nNOS (+) neurons differ from nNOS (-) cells by lacking the production of a significant amount of ROS in response to NMDAR activation.  The absence of NMDA-driven oxidative stress shown by the nNOS (+) neurons abolished the neurotoxic accumulation of Zn2+.  Exposure of nNOS (-) neurons to NMDA in the presence of TPEN (a Zn2+ chelator) mimicked the behavior of the nNOS (+) subpopulation and preserved the nNOS (-) population from the excitotoxic damage.  These results indicate that Zn2+ mobilization is the mandatory step of the excitotoxic cascade.  These findings identify the intraneuronal accumulation of Zn2+ as a therapeutic target for the treatment of excitotoxic prone neurological conditions.","PeriodicalId":37782,"journal":{"name":"Journal of Cellular Neuroscience and Oxidative Stress","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Neuroscience and Oxidative Stress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37212/JCNOS.584662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1

Abstract

NMDA receptor (NMDAR) overstimulation by glutamate promotes massive calcium (Ca2+) entry and initiates a cascade of events leading to the overproduction of Reactive Oxygen Species (ROS), mitochondrial dysfunction, intraneuronal zinc (Zn2+) mobilization, and, ultimately, neuronal demise (Choi 1992).  This glutamate-driven form of neuronal death has been described as excitotoxicity (Olney 1969).  NADPH-diaphorase neurons [nNOS (+) neurons] are a subpopulation of nitric-oxide synthase-overexpressing interneurons that is spared from the NMDAR-mediated neuronal death (Koh and Choi, 1988).  The mechanisms underlying the reduced vulnerability of nNOS (+) neurons to NMDAR-driven neuronal death are still largely unexplored.  In the talk, we will discuss the mechanisms that are involved in the reduced vulnerability of nNOS (+) neurons.  Differences between nNOS (+) and nNOS (-) neurons as far as changes in intracellular Ca2+ levels, mitochondrial functioning, ROS production as well as the intraneuronal accumulation of Zn2+ were investigated.  We found that nNOS (+) neurons differ from nNOS (-) cells by lacking the production of a significant amount of ROS in response to NMDAR activation.  The absence of NMDA-driven oxidative stress shown by the nNOS (+) neurons abolished the neurotoxic accumulation of Zn2+.  Exposure of nNOS (-) neurons to NMDA in the presence of TPEN (a Zn2+ chelator) mimicked the behavior of the nNOS (+) subpopulation and preserved the nNOS (-) population from the excitotoxic damage.  These results indicate that Zn2+ mobilization is the mandatory step of the excitotoxic cascade.  These findings identify the intraneuronal accumulation of Zn2+ as a therapeutic target for the treatment of excitotoxic prone neurological conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细胞内锌动员是nNOS(+)神经元损失所必需的。锌在兴奋毒性级联反应中的作用
谷氨酸对NMDA受体(NMDAR)的过度刺激促进了大量钙(Ca2+)的进入,并引发一系列事件,导致活性氧(ROS)的过量产生、线粒体功能障碍、神经元内锌(Zn2+)的动员,并最终导致神经元死亡(Choi 1992)。这种谷氨酸驱动的神经元死亡形式被描述为兴奋性毒性(Olney 1969)。nadph -脱氢酶神经元[nNOS(+)神经元]是一氧化氮合酶过表达的中间神经元的一个亚群,可免于nmdar介导的神经元死亡(Koh和Choi, 1988)。nNOS(+)神经元对nmdar驱动的神经元死亡的易感性降低的机制在很大程度上仍未被探索。在演讲中,我们将讨论nNOS(+)神经元易损性降低的机制。研究了nNOS(+)和nNOS(-)神经元在细胞内Ca2+水平、线粒体功能、ROS产生以及神经元内Zn2+积累方面的差异。我们发现nNOS(+)神经元与nNOS(-)细胞的不同之处在于,在NMDAR激活的反应中,nNOS(+)神经元缺乏大量ROS的产生。nNOS(+)神经元显示,nmda驱动的氧化应激的缺失消除了Zn2+的神经毒性积累。在TPEN(一种Zn2+螯合剂)存在的情况下,nNOS(-)神经元暴露于NMDA,模拟了nNOS(+)亚群的行为,并保护了nNOS(-)群体免受兴奋性毒性损伤。这些结果表明Zn2+的动员是兴奋毒性级联反应的必要步骤。这些发现确定了Zn2+的神经元内积累作为治疗兴奋性毒性易发神经系统疾病的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cellular Neuroscience and Oxidative Stress
Journal of Cellular Neuroscience and Oxidative Stress Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
1.10
自引率
0.00%
发文量
8
期刊介绍: Journal of Cellular Neuroscience and Oxidative Stress isan online journal that publishes original research articles, reviews and short reviews on themolecular basisofbiophysical,physiological and pharmacological processes thatregulate cellular function, and the control or alteration of these processesby theaction of receptors, neurotransmitters, second messengers, cation, anions,drugsor disease. Areas of particular interest are four topics. They are; 1. Ion Channels (Na+-K+Channels, Cl– channels, Ca2+channels, ADP-Ribose and metabolism of NAD+,Patch-Clamp applications) 2. Oxidative Stress (Antioxidant vitamins, antioxidant enzymes, metabolism of nitric oxide, oxidative stress, biophysics, biochemistry and physiology of free oxygen radicals) 3. Interaction Between Oxidative Stress and Ion Channels in Neuroscience (Effects of the oxidative stress on the activation of the voltage sensitive cation channels, effect of ADP-Ribose and NAD+ on activation of the cation channels which are sensitive to voltage, effect of the oxidative stress on activation of the TRP channels in neurodegenerative diseases such Parkinson’s and Alzheimer’s diseases) 4. Gene and Oxidative Stress (Gene abnormalities. Interaction between gene and free radicals. Gene anomalies and iron. Role of radiation and cancer on gene polymorphism)
期刊最新文献
Circadian rhythms of antioxidant enzymes activity, clock, and inflammation factors are disrupted in the prefrontal cortex of aged rats. Potential targets for therapeutic strategies for a healthy aging. Neuroprotective Effect of Colocasia esculenta Var. Mentawai Corm Flour High-Fat Diet Fed Mice Protective effect of N-acetylcysteine on hippocampal ferroptosis in an experimental obesity model Regulatory role of phospholipase A2 inhibitor in oxidative stress and inflammation induced by an experimental mouse migraine model Fasting alters p75NTR and AgRP mRNA expression in rat olfactory bulb and hippocampus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1