{"title":"Optimal-order convergence of Nesterov acceleration for linear ill-posed problems","authors":"S. Kindermann","doi":"10.1088/1361-6420/abf5bc","DOIUrl":null,"url":null,"abstract":"We show that Nesterov acceleration is an optimal-order iterative regularization method for linear ill-posed problems provided that a parameter is chosen accordingly to the smoothness of the solution. This result is proven both for an a priori stopping rule and for the discrepancy principle under Hölder source conditions. Furthermore, some converse results and logarithmic rates are verified. The essential tool to obtain these results is a representation of the residual polynomials via Gegenbauer polynomials.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/abf5bc","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 8
Abstract
We show that Nesterov acceleration is an optimal-order iterative regularization method for linear ill-posed problems provided that a parameter is chosen accordingly to the smoothness of the solution. This result is proven both for an a priori stopping rule and for the discrepancy principle under Hölder source conditions. Furthermore, some converse results and logarithmic rates are verified. The essential tool to obtain these results is a representation of the residual polynomials via Gegenbauer polynomials.
期刊介绍:
An interdisciplinary journal combining mathematical and experimental papers on inverse problems with theoretical, numerical and practical approaches to their solution.
As well as applied mathematicians, physical scientists and engineers, the readership includes those working in geophysics, radar, optics, biology, acoustics, communication theory, signal processing and imaging, among others.
The emphasis is on publishing original contributions to methods of solving mathematical, physical and applied problems. To be publishable in this journal, papers must meet the highest standards of scientific quality, contain significant and original new science and should present substantial advancement in the field. Due to the broad scope of the journal, we require that authors provide sufficient introductory material to appeal to the wide readership and that articles which are not explicitly applied include a discussion of possible applications.