{"title":"Equilibrium Optimizer: Insights, Balance, Diversity for Renewable Energy Resources Based Optimal Power Flow with Multiple Scenarios","authors":"Sundaram B. Pandya, H. Jariwala","doi":"10.1080/23080477.2021.1932164","DOIUrl":null,"url":null,"abstract":"ABSTRACT Today, along with renewable energy sources such as wind generation units and solar photovoltaic systems, the power grid consists of traditional generating units. An approach for solving single-objective optimal power flow problems with the combination of renewable energy resources (RER-OPF) solar and wind power with conventional coal-based power stations is recommended in the proposed paper. In the proposed work, functions of lognormal and Weibull probability distribution are used, respectively, to forecast solar and wind outcomes. The objective feature includes the underestimation service charge and the standby charge for overestimating unusual non-conventional power generation. The quantitative and comparative results show that Equilibrium optimizer (EO) outperforms compare to Harris Hawks Optimizer (HHO), Grey Wolf Optimizer (GWO), Ions Motion Optimizer (IMO) and Success-History based Adaptive Differential Evolution (SHADE), which are all well-known optimization algorithms for solving RER-OPF problem. The EO optimizer provides the optimum value of each objective function and has merits in solving IEEE-30 bus-based RER-OPF problem, according to several evaluation criteria such as best value statistical criterion. Graphical Abstract","PeriodicalId":53436,"journal":{"name":"Smart Science","volume":"9 1","pages":"257 - 274"},"PeriodicalIF":2.4000,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23080477.2021.1932164","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23080477.2021.1932164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 6
Abstract
ABSTRACT Today, along with renewable energy sources such as wind generation units and solar photovoltaic systems, the power grid consists of traditional generating units. An approach for solving single-objective optimal power flow problems with the combination of renewable energy resources (RER-OPF) solar and wind power with conventional coal-based power stations is recommended in the proposed paper. In the proposed work, functions of lognormal and Weibull probability distribution are used, respectively, to forecast solar and wind outcomes. The objective feature includes the underestimation service charge and the standby charge for overestimating unusual non-conventional power generation. The quantitative and comparative results show that Equilibrium optimizer (EO) outperforms compare to Harris Hawks Optimizer (HHO), Grey Wolf Optimizer (GWO), Ions Motion Optimizer (IMO) and Success-History based Adaptive Differential Evolution (SHADE), which are all well-known optimization algorithms for solving RER-OPF problem. The EO optimizer provides the optimum value of each objective function and has merits in solving IEEE-30 bus-based RER-OPF problem, according to several evaluation criteria such as best value statistical criterion. Graphical Abstract
期刊介绍:
Smart Science (ISSN 2308-0477) is an international, peer-reviewed journal that publishes significant original scientific researches, and reviews and analyses of current research and science policy. We welcome submissions of high quality papers from all fields of science and from any source. Articles of an interdisciplinary nature are particularly welcomed. Smart Science aims to be among the top multidisciplinary journals covering a broad spectrum of smart topics in the fields of materials science, chemistry, physics, engineering, medicine, and biology. Smart Science is currently focusing on the topics of Smart Manufacturing (CPS, IoT and AI) for Industry 4.0, Smart Energy and Smart Chemistry and Materials. Other specific research areas covered by the journal include, but are not limited to: 1. Smart Science in the Future 2. Smart Manufacturing: -Cyber-Physical System (CPS) -Internet of Things (IoT) and Internet of Brain (IoB) -Artificial Intelligence -Smart Computing -Smart Design/Machine -Smart Sensing -Smart Information and Networks 3. Smart Energy and Thermal/Fluidic Science 4. Smart Chemistry and Materials