The role of nanotechnology in overcoming barriers to phage therapy: an overview

IF 2.1 4区 医学 Q3 VIROLOGY Future Virology Pub Date : 2023-05-22 DOI:10.2217/fvl-2022-0229
Mehrdad Mohammadi, Mehrisadat Mirabadi, Masoumeh Beig, Somaieh Nasereslami, Mina Yazdanmehr, Fatemeh Monfared
{"title":"The role of nanotechnology in overcoming barriers to phage therapy: an overview","authors":"Mehrdad Mohammadi, Mehrisadat Mirabadi, Masoumeh Beig, Somaieh Nasereslami, Mina Yazdanmehr, Fatemeh Monfared","doi":"10.2217/fvl-2022-0229","DOIUrl":null,"url":null,"abstract":"Phage treatment has again risen in popularity due to the rise of antibiotic resistance and the need for more reliable alternatives. Human approval of phage therapy has been delayed despite several promising investigations, so, in order to break into the clinical market, existing barriers must be eliminated, and new solutions must be developed. As such, nanotechnology has the potential to help phage formulations overcome their pharmacological drawbacks. The use of nanotechnology to improve phage therapy has received surprisingly little attention in the literature. The key method for increasing phage stability and retention inside the body is encapsulation. New developments in phage therapy using nanotechnology are summarized in this paper.","PeriodicalId":12505,"journal":{"name":"Future Virology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2217/fvl-2022-0229","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Phage treatment has again risen in popularity due to the rise of antibiotic resistance and the need for more reliable alternatives. Human approval of phage therapy has been delayed despite several promising investigations, so, in order to break into the clinical market, existing barriers must be eliminated, and new solutions must be developed. As such, nanotechnology has the potential to help phage formulations overcome their pharmacological drawbacks. The use of nanotechnology to improve phage therapy has received surprisingly little attention in the literature. The key method for increasing phage stability and retention inside the body is encapsulation. New developments in phage therapy using nanotechnology are summarized in this paper.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米技术在克服噬菌体治疗障碍中的作用:综述
由于抗生素耐药性的增加和对更可靠替代品的需求,噬菌体治疗再次受到欢迎。尽管有几项有希望的研究,噬菌体治疗的人类批准一直被推迟,因此,为了进入临床市场,必须消除现有的障碍,并开发新的解决方案。因此,纳米技术有可能帮助噬菌体配方克服它们的药理学缺陷。利用纳米技术改善噬菌体治疗在文献中得到的关注少得惊人。提高噬菌体在体内稳定性和滞留性的关键方法是包封。本文综述了纳米技术在噬菌体治疗方面的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Future Virology
Future Virology 医学-病毒学
CiteScore
4.00
自引率
3.20%
发文量
84
审稿时长
6-12 weeks
期刊介绍: Future Virology is a peer-reviewed journal that delivers essential information in concise, at-a-glance article formats. Key advances in the field are reported and analyzed by international experts, providing an authoritative but accessible forum for this ever-expanding area of research. It is an interdisciplinary forum for all scientists working in the field today.
期刊最新文献
Trends and perspectives in tuberculosis and HIV co-infection studies over the past three decades Human RSVA-ON1, the only genotype present during 2019–2020 winter season in Riyadh, Saudi Arabia: a retrospective study Rosmarinic acid inhibits Rift Valley fever virus: in vitro, computational and analytical studies Plain language summary of the efficacy and safety of bepirovirsen in patients with chronic hepatitis B infection Expression and significance of IL-17A and IL-22 in children with infectious mononucleosis complicated with liver damage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1