{"title":"Multi-round smoothed composite quantile regression for distributed data","authors":"Fengrui Di, Lei Wang","doi":"10.1007/s10463-021-00816-0","DOIUrl":null,"url":null,"abstract":"<div><p>Statistical analysis of large-scale dataset is challenging due to the limited memory constraint and computation source and calls for the efficient distributed methods. In this paper, we mainly study the distributed estimation and inference for composite quantile regression (CQR). For computational and statistical efficiency, we propose to apply a smoothing idea to the CQR loss function for the distributed data and then successively refine the estimator via multiple rounds of aggregations. Based on the Bahadur representation, we derive the asymptotic normality of the proposed multi-round smoothed CQR estimator and show that it also achieves the same efficiency of the ideal CQR estimator by analyzing the entire dataset simultaneously. Moreover, to improve the efficiency of the CQR, we propose a multi-round smoothed weighted CQR estimator. Extensive numerical experiments on both simulated and real data validate the superior performance of the proposed estimators.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":"74 5","pages":"869 - 893"},"PeriodicalIF":0.6000,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-021-00816-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2
Abstract
Statistical analysis of large-scale dataset is challenging due to the limited memory constraint and computation source and calls for the efficient distributed methods. In this paper, we mainly study the distributed estimation and inference for composite quantile regression (CQR). For computational and statistical efficiency, we propose to apply a smoothing idea to the CQR loss function for the distributed data and then successively refine the estimator via multiple rounds of aggregations. Based on the Bahadur representation, we derive the asymptotic normality of the proposed multi-round smoothed CQR estimator and show that it also achieves the same efficiency of the ideal CQR estimator by analyzing the entire dataset simultaneously. Moreover, to improve the efficiency of the CQR, we propose a multi-round smoothed weighted CQR estimator. Extensive numerical experiments on both simulated and real data validate the superior performance of the proposed estimators.
期刊介绍:
Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.