A High-Throughput, Resource-Efficient Implementation of the RoCEv2 Remote DMA Protocol and its Application

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE ACM Transactions on Reconfigurable Technology and Systems Pub Date : 2022-12-22 DOI:10.1145/3543176
Niklas Schelten, Fritjof Steinert, Justin Knapheide, Anton Schulte, B. Stabernack
{"title":"A High-Throughput, Resource-Efficient Implementation of the RoCEv2 Remote DMA Protocol and its Application","authors":"Niklas Schelten, Fritjof Steinert, Justin Knapheide, Anton Schulte, B. Stabernack","doi":"10.1145/3543176","DOIUrl":null,"url":null,"abstract":"The use of application-specific accelerators in data centers has been the state of the art for at least a decade, starting with the availability of General Purpose GPUs achieving higher performance either overall or per watt. In most cases, these accelerators are coupled via PCIe interfaces to the corresponding hosts, which leads to disadvantages in interoperability, scalability and power consumption. As a viable alternative to PCIe-attached FPGA accelerators this paper proposes standalone FPGAs as Network-attached Accelerators (NAAs). To enable reliable communication for decoupled FPGAs we present an RDMA over Converged Ethernet v2 (RoCEv2) communication stack for high-speed and low-latency data transfer integrated into a hardware framework. For NAAs to be used instead of PCIe coupled FPGAs the framework must provide similar throughput and latency with low resource usage. We show that our RoCEv2 stack is capable of achieving 100 Gb/s throughput with latencies of less than 4μs while using about 10% of the available resources on a mid-range FPGA. To evaluate the energy efficiency of our NAA architecture, we built a demonstrator with 8 NAAs for machine learning based image classification. Based on our measurements, network-attached FPGAs are a great alternative to the more energy-demanding PCIe-attached FPGA accelerators.","PeriodicalId":49248,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems","volume":"16 1","pages":"1 - 23"},"PeriodicalIF":3.1000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3543176","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 1

Abstract

The use of application-specific accelerators in data centers has been the state of the art for at least a decade, starting with the availability of General Purpose GPUs achieving higher performance either overall or per watt. In most cases, these accelerators are coupled via PCIe interfaces to the corresponding hosts, which leads to disadvantages in interoperability, scalability and power consumption. As a viable alternative to PCIe-attached FPGA accelerators this paper proposes standalone FPGAs as Network-attached Accelerators (NAAs). To enable reliable communication for decoupled FPGAs we present an RDMA over Converged Ethernet v2 (RoCEv2) communication stack for high-speed and low-latency data transfer integrated into a hardware framework. For NAAs to be used instead of PCIe coupled FPGAs the framework must provide similar throughput and latency with low resource usage. We show that our RoCEv2 stack is capable of achieving 100 Gb/s throughput with latencies of less than 4μs while using about 10% of the available resources on a mid-range FPGA. To evaluate the energy efficiency of our NAA architecture, we built a demonstrator with 8 NAAs for machine learning based image classification. Based on our measurements, network-attached FPGAs are a great alternative to the more energy-demanding PCIe-attached FPGA accelerators.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RoCEv2远程DMA协议的高吞吐量、资源高效实现及其应用
从通用GPU的可用性开始,在数据中心中使用特定于应用程序的加速器已经成为最先进的技术至少十年了,无论是总体性能还是每瓦性能。在大多数情况下,这些加速器通过PCIe接口耦合到相应的主机,这导致了互操作性、可扩展性和功耗方面的缺点。作为PCIe连接FPGA加速器的可行替代方案,本文提出了独立的FPGA作为网络连接加速器(NAAs)。为了实现解耦FPGA的可靠通信,我们提出了一种RDMA over Converged Ethernet v2(RoCEv2)通信堆栈,用于集成到硬件框架中的高速低延迟数据传输。对于要使用NAA而不是PCIe耦合的FPGA,框架必须以低资源使用率提供类似的吞吐量和延迟。我们证明,我们的RoCEv2堆栈能够实现100 Gb/s的吞吐量,延迟小于4μs,同时在中端FPGA上使用约10%的可用资源。为了评估我们的NAA架构的能量效率,我们构建了一个具有8个NAA的演示器,用于基于机器学习的图像分类。根据我们的测量,网络连接的FPGA是对能源要求更高的PCIe连接FPGA加速器的一个很好的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Reconfigurable Technology and Systems
ACM Transactions on Reconfigurable Technology and Systems COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
CiteScore
4.90
自引率
8.70%
发文量
79
审稿时长
>12 weeks
期刊介绍: TRETS is the top journal focusing on research in, on, and with reconfigurable systems and on their underlying technology. The scope, rationale, and coverage by other journals are often limited to particular aspects of reconfigurable technology or reconfigurable systems. TRETS is a journal that covers reconfigurability in its own right. Topics that would be appropriate for TRETS would include all levels of reconfigurable system abstractions and all aspects of reconfigurable technology including platforms, programming environments and application successes that support these systems for computing or other applications. -The board and systems architectures of a reconfigurable platform. -Programming environments of reconfigurable systems, especially those designed for use with reconfigurable systems that will lead to increased programmer productivity. -Languages and compilers for reconfigurable systems. -Logic synthesis and related tools, as they relate to reconfigurable systems. -Applications on which success can be demonstrated. The underlying technology from which reconfigurable systems are developed. (Currently this technology is that of FPGAs, but research on the nature and use of follow-on technologies is appropriate for TRETS.) In considering whether a paper is suitable for TRETS, the foremost question should be whether reconfigurability has been essential to success. Topics such as architecture, programming languages, compilers, and environments, logic synthesis, and high performance applications are all suitable if the context is appropriate. For example, an architecture for an embedded application that happens to use FPGAs is not necessarily suitable for TRETS, but an architecture using FPGAs for which the reconfigurability of the FPGAs is an inherent part of the specifications (perhaps due to a need for re-use on multiple applications) would be appropriate for TRETS.
期刊最新文献
End-to-end codesign of Hessian-aware quantized neural networks for FPGAs DyRecMul: Fast and Low-Cost Approximate Multiplier for FPGAs using Dynamic Reconfiguration Dynamic-ACTS - A Dynamic Graph Analytics Accelerator For HBM-Enabled FPGAs NC-Library: Expanding SystemC Capabilities for Nested reConfigurable Hardware Modelling PQA: Exploring the Potential of Product Quantization in DNN Hardware Acceleration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1