Safety Monitoring and Evaluation of Construction Projects Based on Multi-sensor Fusion

Q3 Engineering Instrumentation Mesure Metrologie Pub Date : 2020-12-29 DOI:10.18280/i2m.190604
Na Ni
{"title":"Safety Monitoring and Evaluation of Construction Projects Based on Multi-sensor Fusion","authors":"Na Ni","doi":"10.18280/i2m.190604","DOIUrl":null,"url":null,"abstract":"For most construction projects, the complex engineering environment, the backward data collection technology, and the unreasonable monitoring network have resulted in many problems in monitoring data such as lots of noise and missing data items, therefore, it is of great significance to study the safety monitoring system of construction projects based on wireless sensor network (WSN). For this reason, this paper proposed a construction safety monitoring and evaluation (CSME) model based on multi-sensor fusion. First, the system structure and data flow model of the construction safety monitoring system were constructed; then, combining with a multi-sensor deep fusion system which was built on physical and information systems, this paper designed a spectrum sensing algorithm for sensor signals within the construction area. After that, tempo-spatial correlation analysis was conducted on the monitoring data, and a multi-sensor monitoring network joint sparse (MSMN-JS) model was constructed, which realized reconstruction of missing data items. At last, this paper used experimental results to prove the application value of the algorithm model to the safety monitoring and evaluation of construction projects.","PeriodicalId":38637,"journal":{"name":"Instrumentation Mesure Metrologie","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instrumentation Mesure Metrologie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/i2m.190604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

Abstract

For most construction projects, the complex engineering environment, the backward data collection technology, and the unreasonable monitoring network have resulted in many problems in monitoring data such as lots of noise and missing data items, therefore, it is of great significance to study the safety monitoring system of construction projects based on wireless sensor network (WSN). For this reason, this paper proposed a construction safety monitoring and evaluation (CSME) model based on multi-sensor fusion. First, the system structure and data flow model of the construction safety monitoring system were constructed; then, combining with a multi-sensor deep fusion system which was built on physical and information systems, this paper designed a spectrum sensing algorithm for sensor signals within the construction area. After that, tempo-spatial correlation analysis was conducted on the monitoring data, and a multi-sensor monitoring network joint sparse (MSMN-JS) model was constructed, which realized reconstruction of missing data items. At last, this paper used experimental results to prove the application value of the algorithm model to the safety monitoring and evaluation of construction projects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多传感器融合的建设项目安全监测与评价
对于大多数建设项目来说,复杂的工程环境、落后的数据采集技术和不合理的监测网络导致了监测数据中存在大量噪声和数据项缺失等问题,因此,研究基于无线传感器网络的建设项目安全监测系统具有重要意义。为此,本文提出了一种基于多传感器融合的建筑安全监测与评价(CSME)模型。首先,构建了施工安全监控系统的系统结构和数据流模型;然后,结合建立在物理和信息系统基础上的多传感器深度融合系统,设计了一种针对施工区域内传感器信号的频谱感知算法。然后,对监测数据进行了时空相关性分析,构建了多传感器监测网络联合稀疏(MSMN-JS)模型,实现了缺失数据项的重建。最后,本文用实验结果证明了算法模型在建设项目安全监测与评价中的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Instrumentation Mesure Metrologie
Instrumentation Mesure Metrologie Engineering-Engineering (miscellaneous)
CiteScore
1.70
自引率
0.00%
发文量
25
期刊最新文献
A Device for Measuring the Electrical Conductivity of Liquids Using Phase Sensitive Detection Technique Design and Evaluation of a Spider Web-Like Single-Axis Micro-Electro-Mechanical Systems Accelerometer with High Sensitivity and Fast Response Investigating Fluid Flow Regimes: A Novel Design and Implementation of Bernoulli’s Apparatus Metrological Characterization of Spring Impact Hammer Calibration Advanced Sensor-Based Cap Cooling System for Mitigating Chemotherapy-Induced Hair Loss
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1