Asymptotics of the spectrum of the mixed boundary value problem for the Laplace operator in a thin spindle-shaped domain

Pub Date : 2022-03-04 DOI:10.1090/spmj/1701
S. Nazarov, J. Taskinen
{"title":"Asymptotics of the spectrum of the mixed boundary value problem for the Laplace operator in a thin spindle-shaped domain","authors":"S. Nazarov, J. Taskinen","doi":"10.1090/spmj/1701","DOIUrl":null,"url":null,"abstract":"<p>The asymptotics is examined for solutions to the spectral problem for the Laplace operator in a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\n <mml:semantics>\n <mml:mi>d</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-dimensional thin, of diameter <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis h right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>O</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>h</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">O(h)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, spindle-shaped domain <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega Superscript h\">\n <mml:semantics>\n <mml:msup>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mi>h</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\Omega ^h</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with the Dirichlet condition on small, of size <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h much-less-than 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>h</mml:mi>\n <mml:mo>≪<!-- ≪ --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">h\\ll 1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, terminal zones <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma Subscript plus-or-minus Superscript h\">\n <mml:semantics>\n <mml:msubsup>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mo>±<!-- ± --></mml:mo>\n <mml:mi>h</mml:mi>\n </mml:msubsup>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma ^h_\\pm</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and the Neumann condition on the remaining part of the boundary <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"partial-differential normal upper Omega Superscript h\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi>\n <mml:msup>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mi>h</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\partial \\Omega ^h</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In the limit as <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h right-arrow plus 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>h</mml:mi>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mo>+</mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">h\\rightarrow +0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, an ordinary differential equation on the axis <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis negative 1 comma 1 right-parenthesis contains-as-member z\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>∋<!-- ∋ --></mml:mo>\n <mml:mi>z</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(-1,1)\\ni z</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of the spindle arises with a coefficient degenerating at the points <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"z equals plus-or-minus 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>z</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mo>±<!-- ± --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">z=\\pm 1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and moreover, without any boundary condition because the requirement on the boundedness of eigenfunctions makes the limit spectral problem well-posed. Error estimates are derived for the one-dimensional model but in the case of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d equals 3\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>d</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>3</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">d=3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> it is necessary to construct boundary layers near the sets <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma Subscript plus-or-minus Superscript h\">\n <mml:semantics>\n <mml:msubsup>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mo>±<!-- ± --></mml:mo>\n <mml:mi>h</mml:mi>\n </mml:msubsup>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma ^h_\\pm</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and in the case of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d equals 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>d</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">d=2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> it is necessary to deal with selfadjoint extensions of the differential operator. The extension parameters depend linearly on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ln h\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>ln</mml:mi>\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\n <mml:mi>h</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\ln h</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> so that its eigenvalues are analytic functions in the variable <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 slash StartAbsoluteValue ln h EndAbsoluteValue\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>ln</mml:mi>\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\n <mml:mi>h</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">1/|\\ln h|</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. As a result, in all dimensions the one-dimensional model gets the power-law accuracy <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis h Superscript delta Super Subscript d Superscript Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>O</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>h</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msub>\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:mi>d</mml:mi>\n </mml:msub>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">O(h^{\\delta _d})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with an exponent <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"delta Subscript d Baseline greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:mi>d</mml:mi>\n </mml:msub>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\delta _d>0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. First (the smallest) eigenvalues, positive in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega Superscript h\">\n <mml:semantics>\n <mml:msup>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mi>h</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\Omega ^h</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and null in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis negative 1 comma 1 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(-1,1)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, require individual treatment. Also, infinite asymptotic series are discussed, as well as the static problem (without the spectral parameter) and related shapes of thin domains.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The asymptotics is examined for solutions to the spectral problem for the Laplace operator in a d d -dimensional thin, of diameter O ( h ) O(h) , spindle-shaped domain Ω h \Omega ^h with the Dirichlet condition on small, of size h 1 h\ll 1 , terminal zones Γ ± h \Gamma ^h_\pm and the Neumann condition on the remaining part of the boundary Ω h \partial \Omega ^h . In the limit as h + 0 h\rightarrow +0 , an ordinary differential equation on the axis ( 1 , 1 ) z (-1,1)\ni z of the spindle arises with a coefficient degenerating at the points z = ± 1 z=\pm 1 and moreover, without any boundary condition because the requirement on the boundedness of eigenfunctions makes the limit spectral problem well-posed. Error estimates are derived for the one-dimensional model but in the case of d = 3 d=3 it is necessary to construct boundary layers near the sets Γ ± h \Gamma ^h_\pm and in the case of d = 2 d=2 it is necessary to deal with selfadjoint extensions of the differential operator. The extension parameters depend linearly on ln h \ln h so that its eigenvalues are analytic functions in the variable 1 / | ln h | 1/|\ln h| . As a result, in all dimensions the one-dimensional model gets the power-law accuracy O ( h δ d ) O(h^{\delta _d}) with an exponent δ d > 0 \delta _d>0 . First (the smallest) eigenvalues, positive in Ω h \Omega ^h and null in  ( 1 , 1 ) (-1,1) , require individual treatment. Also, infinite asymptotic series are discussed, as well as the static problem (without the spectral parameter) and related shapes of thin domains.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
细纺锤形域中拉普拉斯算子混合边值问题谱的渐近性
研究了拉普拉斯算子在直径为O(h)O(h,终端区Γ±h\Gamma^h\pm和边界剩余部分上的Neumann条件。在极限为h时→ + 0h\rightarrow+0,在主轴的轴(−1,1)∋z(-1,1)\ni z上产生了一个常微分方程,其系数在点z=±1 z=\pm 1处退化,此外,没有任何边界条件,因为对本征函数有界性的要求使得极限谱问题具有良好的适定性。导出了一维模型的误差估计,但在d=3 d=3的情况下,有必要在Γ±h\Gamma^h\pm集合附近构造边界层,在d=2 d=2的情况下有必要处理微分算子的自伴随扩展。扩展参数线性依赖于ln⁡ 使得其特征值是变量1/|ln中的解析函数⁡ h|1/|\ln h|。因此,在所有维度上,一维模型都得到幂律精度O(hδd)O(h^{\delta _d}),指数δd>0\delta _d>0。第一个(最小的)特征值,在Ωh\Omega^h中为正,在(−1,1)(-1,1)中为零,需要单独处理。此外,还讨论了无限渐近级数,以及薄域的静态问题(不含谱参数)和相关形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1