A generalised SEIRD model with implicit social distancing mechanism: A Bayesian approach for the identification of the spread of COVID-19 with applications in Brazil and Rio de Janeiro state

IF 1.3 4区 工程技术 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Simulation Pub Date : 2021-09-29 DOI:10.1080/17477778.2021.1977731
D. Volpatto, A. C. M. Resende, Lucas dos Anjos, João V. O. Silva, C. M. Dias, R. C. Almeida, S. Malta
{"title":"A generalised SEIRD model with implicit social distancing mechanism: A Bayesian approach for the identification of the spread of COVID-19 with applications in Brazil and Rio de Janeiro state","authors":"D. Volpatto, A. C. M. Resende, Lucas dos Anjos, João V. O. Silva, C. M. Dias, R. C. Almeida, S. Malta","doi":"10.1080/17477778.2021.1977731","DOIUrl":null,"url":null,"abstract":"ABSTRACT We develop a generalized Susceptible--Exposed--Infected--Removed--Dead (SEIRD) model considering social distancing measures to describe the COVID-19 spread in Brazil. We assume uncertain scenarios with limited testing capacity, lack of reliable data, under-reporting of cases, and restricted testing policy. A Bayesian framework is proposed for the identification of model parameters and uncertainty quantification of the model outcomes. We identify through sensitivity analysis (SA) that the model parameter related to social distancing measures is one of the most influential. Different relaxation strategies of social distancing measures are then investigated to determine which are viable and less hazardous to the population. The scenario of abrupt social distancing relaxation implemented after the peak of positively diagnosed cases can prolong the epidemic. A more severe scenario occurs if a social distancing relaxation policy is implemented prior to the evidence of epidemiological control, indicating the importance of the appropriate choice of when to start the relaxation.","PeriodicalId":51296,"journal":{"name":"Journal of Simulation","volume":"17 1","pages":"178 - 192"},"PeriodicalIF":1.3000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17477778.2021.1977731","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 4

Abstract

ABSTRACT We develop a generalized Susceptible--Exposed--Infected--Removed--Dead (SEIRD) model considering social distancing measures to describe the COVID-19 spread in Brazil. We assume uncertain scenarios with limited testing capacity, lack of reliable data, under-reporting of cases, and restricted testing policy. A Bayesian framework is proposed for the identification of model parameters and uncertainty quantification of the model outcomes. We identify through sensitivity analysis (SA) that the model parameter related to social distancing measures is one of the most influential. Different relaxation strategies of social distancing measures are then investigated to determine which are viable and less hazardous to the population. The scenario of abrupt social distancing relaxation implemented after the peak of positively diagnosed cases can prolong the epidemic. A more severe scenario occurs if a social distancing relaxation policy is implemented prior to the evidence of epidemiological control, indicating the importance of the appropriate choice of when to start the relaxation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有隐式社交距离机制的广义SEIRD模型:识别新冠肺炎传播的贝叶斯方法及其在巴西和里约热内卢州的应用
我们建立了一个广义的易感-暴露-感染-移除-死亡(SEIRD)模型,考虑社会距离措施来描述COVID-19在巴西的传播。我们假设不确定的情况下,检测能力有限,缺乏可靠的数据,病例报告不足,检测政策受限。提出了一个贝叶斯框架,用于模型参数的识别和模型结果的不确定性量化。通过敏感性分析(SA),我们发现与社会距离措施相关的模型参数是最具影响力的参数之一。然后研究了不同的放松社会距离措施的策略,以确定哪些是可行的,对人群的危害较小。在确诊病例高峰后突然放松社交距离的情景可能会延长疫情。如果在流行病学控制证据出现之前实施放松社会距离政策,则会出现更严重的情况,这表明适当选择何时开始放松政策的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Simulation
Journal of Simulation COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-OPERATIONS RESEARCH & MANAGEMENT SCIENCE
CiteScore
5.70
自引率
16.00%
发文量
42
期刊介绍: Journal of Simulation (JOS) aims to publish both articles and technical notes from researchers and practitioners active in the field of simulation. In JOS, the field of simulation includes the techniques, tools, methods and technologies of the application and the use of discrete-event simulation, agent-based modelling and system dynamics.
期刊最新文献
Simulation- optimisation approach to support management of blood components inventory The impact of a tariff on logistics service strategies in an international e-commerce trade: game theory and agent-based model Using discrete-event simulation to assess an AHP-based dynamic patient prioritisation policy for elective surgery Quantization-based simulation of spiking neurons: theoretical properties and performance analysis Application of microscopic discrete event-based simulation in the modelling of the city logistics systems of concentrated sets of delivery locations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1