Performance Improvement of a Multi-State Coherent System using Component Importance Measure

Q3 Business, Management and Accounting American Journal of Mathematical and Management Sciences Pub Date : 2019-04-30 DOI:10.1080/01966324.2018.1551733
S. Roychowdhury, D. Bhattacharya
{"title":"Performance Improvement of a Multi-State Coherent System using Component Importance Measure","authors":"S. Roychowdhury, D. Bhattacharya","doi":"10.1080/01966324.2018.1551733","DOIUrl":null,"url":null,"abstract":"SYNOPTIC ABSTRACT In system engineering, numerous efforts have been made for achieving improvement in system performance under a binary set up, where each component, as well as the entire system, has any one of two states; namely, perfect functioning and complete failure. However, there are systems which perform their tasks at various performance levels rather than functioning at only the above two performance levels. These systems are multi-state systems. In these systems, there can be some partially working states or performance levels before the system comes to the state of complete failure. Hence, the need has been felt to develop the procedures for improving the performance of multi-state systems consisting of multi-state components. This article resolves such an issue for a multi-state system using a multi-state component importance measure. The measure developed here is used to assess the impact of individual components on the improvement of system performance. Some basic theory to deal with a homogeneous multi-state coherent system has been developed, and finally, a rule has been derived to improve system performance using the importance measure. The applications of the results have been illustrated through a real-life example.","PeriodicalId":35850,"journal":{"name":"American Journal of Mathematical and Management Sciences","volume":"38 1","pages":"312 - 324"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01966324.2018.1551733","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematical and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01966324.2018.1551733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 2

Abstract

SYNOPTIC ABSTRACT In system engineering, numerous efforts have been made for achieving improvement in system performance under a binary set up, where each component, as well as the entire system, has any one of two states; namely, perfect functioning and complete failure. However, there are systems which perform their tasks at various performance levels rather than functioning at only the above two performance levels. These systems are multi-state systems. In these systems, there can be some partially working states or performance levels before the system comes to the state of complete failure. Hence, the need has been felt to develop the procedures for improving the performance of multi-state systems consisting of multi-state components. This article resolves such an issue for a multi-state system using a multi-state component importance measure. The measure developed here is used to assess the impact of individual components on the improvement of system performance. Some basic theory to deal with a homogeneous multi-state coherent system has been developed, and finally, a rule has been derived to improve system performance using the importance measure. The applications of the results have been illustrated through a real-life example.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用分量重要性测度改善多状态相干系统的性能
概要摘要在系统工程中,为了在二进制设置下提高系统性能,已经做出了许多努力,其中每个组件以及整个系统都具有两种状态中的任何一种;即功能完善和完全失效。然而,有些系统以不同的性能级别执行任务,而不是仅以上述两个性能级别运行。这些系统是多状态系统。在这些系统中,在系统达到完全故障状态之前,可能存在一些部分工作状态或性能级别。因此,人们认为有必要开发程序来提高由多状态组件组成的多状态系统的性能。本文使用多状态组件重要性度量来解决多状态系统的此类问题。此处开发的度量用于评估单个组件对系统性能改进的影响。发展了处理齐次多状态相干系统的一些基本理论,最后,利用重要性测度导出了提高系统性能的规则。通过一个实际的例子说明了结果的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
American Journal of Mathematical and Management Sciences
American Journal of Mathematical and Management Sciences Business, Management and Accounting-Business, Management and Accounting (all)
CiteScore
2.70
自引率
0.00%
发文量
5
期刊最新文献
The Unit Omega Distribution, Properties and Its Application Classical and Bayesian Inference of Unit Gompertz Distribution Based on Progressively Type II Censored Data An Alternative Discrete Analogue of the Half-Logistic Distribution Based on Minimization of a Distance between Cumulative Distribution Functions Classical and Bayes Analyses of Autoregressive Model with Heavy-Tailed Error Testing on the Quantiles of a Single Normal Population in the Presence of Several Normal Populations with a Common Variance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1