Prediction of the rhodinol content in Java citronella oil using NIR spectroscopy in the initial stage developing a spectral smart sensor system – Case report

Q3 Agricultural and Biological Sciences Research in Agricultural Engineering Pub Date : 2022-11-20 DOI:10.17221/87/2021-rae
Dedi Wahyudi, E. Noor, D. Setyaningsih, Taufik Djatna, I. Irmansyah
{"title":"Prediction of the rhodinol content in Java citronella oil using NIR spectroscopy in the initial stage developing a spectral smart sensor system – Case report","authors":"Dedi Wahyudi, E. Noor, D. Setyaningsih, Taufik Djatna, I. Irmansyah","doi":"10.17221/87/2021-rae","DOIUrl":null,"url":null,"abstract":"The rhodinol content is an essential component in determining the citronella oil qualities. This study aimed to develop a model calibrated to predict the rhodinol content in citronella oil using near-infrared (NIR) spectroscopy. This research is the initial stage in developing a spectral smart sensor system that predicts the rhodinol content of citronella oil in the distillation and fractionating process. Citronella oil samples were scanned by NIRFlex liquid N-500 with a wavelength of 1 000–2 500 nm having an absorbance value (log 1/T). The accuracy of the prediction was achieved using the partial least square (PLS) model. Based on the NIR spectrum at a peak of around 1 620 nm, the rhodinol content in the citronella oil was estimated. The finest model to predict the rhodinol content was y = 0.9874x + 15.6439 with a standard error of the calibration set (SEC) = 2.78%, a standard error of the prediction set (SEP) = 2.88%, a ratio of the performance to the deviation (RPD) = 9.23, a coefficient of variation (CV) = 16.81%, and the correlation coefficient (r) = 0.99. The NIR and PLS models are possible to use for the initial stage in developing a spectral smart sensor system to determine the rhodinol content of citronella oils.","PeriodicalId":20906,"journal":{"name":"Research in Agricultural Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Agricultural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17221/87/2021-rae","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

The rhodinol content is an essential component in determining the citronella oil qualities. This study aimed to develop a model calibrated to predict the rhodinol content in citronella oil using near-infrared (NIR) spectroscopy. This research is the initial stage in developing a spectral smart sensor system that predicts the rhodinol content of citronella oil in the distillation and fractionating process. Citronella oil samples were scanned by NIRFlex liquid N-500 with a wavelength of 1 000–2 500 nm having an absorbance value (log 1/T). The accuracy of the prediction was achieved using the partial least square (PLS) model. Based on the NIR spectrum at a peak of around 1 620 nm, the rhodinol content in the citronella oil was estimated. The finest model to predict the rhodinol content was y = 0.9874x + 15.6439 with a standard error of the calibration set (SEC) = 2.78%, a standard error of the prediction set (SEP) = 2.88%, a ratio of the performance to the deviation (RPD) = 9.23, a coefficient of variation (CV) = 16.81%, and the correlation coefficient (r) = 0.99. The NIR and PLS models are possible to use for the initial stage in developing a spectral smart sensor system to determine the rhodinol content of citronella oils.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用近红外光谱技术预测爪哇香茅油中罗dinol的含量,初步开发了光谱智能传感器系统-案例报告
rhodinol含量是测定香茅油品质的重要成分。本研究旨在建立一种近红外光谱预测香茅油中rhodinol含量的校准模型。本研究是开发光谱智能传感器系统的初始阶段,该系统可以预测香茅油在蒸馏和分馏过程中的rhodinol含量。香茅油样品采用NIRFlex液体N-500扫描,波长为1 000-2 500 nm,吸光度值为log 1/T。使用偏最小二乘(PLS)模型实现了预测的准确性。利用1 620 nm左右的近红外光谱,估计了香茅油中rhodinol的含量。最佳模型为y = 0.9874x + 15.6439,校正集标准误差(SEC) = 2.78%,预测集标准误差(SEP) = 2.88%,性能与偏差比(RPD) = 9.23,变异系数(CV) = 16.81%,相关系数(r) = 0.99。近红外和PLS模型可以用于开发光谱智能传感器系统的初始阶段,以确定香茅油的rhodinol含量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Research in Agricultural Engineering
Research in Agricultural Engineering Engineering, agriculture-
CiteScore
1.40
自引率
0.00%
发文量
21
审稿时长
24 weeks
期刊介绍: Original scientific papers, short communications, information, and studies covering all areas of agricultural engineering, agricultural technology, processing of agricultural products, countryside buildings and related problems from ecology, energetics, economy, ergonomy and applied physics and chemistry. Papers are published in English.
期刊最新文献
The effect of parameter adjustment in sago palm classification-based convolutional neural network (CNN) model Influence of soil tillage technology on tillage erosion Fabrication and performance test of a multipurpose ohmic heating apparatus with a real-time data logging system based on low-cost sensors Enhancing melon yield through a low-cost drip irrigation control system with time and soil sensor Reconstructed military machine for unique field testing of agricultural machinery capabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1