Prediction of the rhodinol content in Java citronella oil using NIR spectroscopy in the initial stage developing a spectral smart sensor system – Case report
Dedi Wahyudi, E. Noor, D. Setyaningsih, Taufik Djatna, I. Irmansyah
{"title":"Prediction of the rhodinol content in Java citronella oil using NIR spectroscopy in the initial stage developing a spectral smart sensor system – Case report","authors":"Dedi Wahyudi, E. Noor, D. Setyaningsih, Taufik Djatna, I. Irmansyah","doi":"10.17221/87/2021-rae","DOIUrl":null,"url":null,"abstract":"The rhodinol content is an essential component in determining the citronella oil qualities. This study aimed to develop a model calibrated to predict the rhodinol content in citronella oil using near-infrared (NIR) spectroscopy. This research is the initial stage in developing a spectral smart sensor system that predicts the rhodinol content of citronella oil in the distillation and fractionating process. Citronella oil samples were scanned by NIRFlex liquid N-500 with a wavelength of 1 000–2 500 nm having an absorbance value (log 1/T). The accuracy of the prediction was achieved using the partial least square (PLS) model. Based on the NIR spectrum at a peak of around 1 620 nm, the rhodinol content in the citronella oil was estimated. The finest model to predict the rhodinol content was y = 0.9874x + 15.6439 with a standard error of the calibration set (SEC) = 2.78%, a standard error of the prediction set (SEP) = 2.88%, a ratio of the performance to the deviation (RPD) = 9.23, a coefficient of variation (CV) = 16.81%, and the correlation coefficient (r) = 0.99. The NIR and PLS models are possible to use for the initial stage in developing a spectral smart sensor system to determine the rhodinol content of citronella oils.","PeriodicalId":20906,"journal":{"name":"Research in Agricultural Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Agricultural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17221/87/2021-rae","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1
Abstract
The rhodinol content is an essential component in determining the citronella oil qualities. This study aimed to develop a model calibrated to predict the rhodinol content in citronella oil using near-infrared (NIR) spectroscopy. This research is the initial stage in developing a spectral smart sensor system that predicts the rhodinol content of citronella oil in the distillation and fractionating process. Citronella oil samples were scanned by NIRFlex liquid N-500 with a wavelength of 1 000–2 500 nm having an absorbance value (log 1/T). The accuracy of the prediction was achieved using the partial least square (PLS) model. Based on the NIR spectrum at a peak of around 1 620 nm, the rhodinol content in the citronella oil was estimated. The finest model to predict the rhodinol content was y = 0.9874x + 15.6439 with a standard error of the calibration set (SEC) = 2.78%, a standard error of the prediction set (SEP) = 2.88%, a ratio of the performance to the deviation (RPD) = 9.23, a coefficient of variation (CV) = 16.81%, and the correlation coefficient (r) = 0.99. The NIR and PLS models are possible to use for the initial stage in developing a spectral smart sensor system to determine the rhodinol content of citronella oils.
期刊介绍:
Original scientific papers, short communications, information, and studies covering all areas of agricultural engineering, agricultural technology, processing of agricultural products, countryside buildings and related problems from ecology, energetics, economy, ergonomy and applied physics and chemistry. Papers are published in English.