Parametric Confidence Intervals of Spmk for Generalized Exponential Distribution

Q3 Business, Management and Accounting American Journal of Mathematical and Management Sciences Pub Date : 2021-08-04 DOI:10.1080/01966324.2021.1949412
S. Dey, Mahendra Saha, Sumit Kumar
{"title":"Parametric Confidence Intervals of Spmk for Generalized Exponential Distribution","authors":"S. Dey, Mahendra Saha, Sumit Kumar","doi":"10.1080/01966324.2021.1949412","DOIUrl":null,"url":null,"abstract":"Abstract The objective of this article is to compare highest posterior density (HPD) credible interval with three bootstrap confidence intervals (BCIs) as well as with asymptotic confidence interval (ACI) using maximum likelihood and Bayesian approaches of a new process capability index, Spmk when the underlying distribution is generalized exponential. This new index can be used for normal as well as non-normal quality characteristics. Through extensive simulation studies and with two real life examples related to industry data, we compare the performances of classical and the Bayes estimates based on different loss functions and compared among the HPD credible intervals, three BCIs and ACIs in terms of coverage probabilities, average width, and respective relative coverages of the index Spmk , respectively.","PeriodicalId":35850,"journal":{"name":"American Journal of Mathematical and Management Sciences","volume":"41 1","pages":"201 - 222"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01966324.2021.1949412","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematical and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01966324.2021.1949412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract The objective of this article is to compare highest posterior density (HPD) credible interval with three bootstrap confidence intervals (BCIs) as well as with asymptotic confidence interval (ACI) using maximum likelihood and Bayesian approaches of a new process capability index, Spmk when the underlying distribution is generalized exponential. This new index can be used for normal as well as non-normal quality characteristics. Through extensive simulation studies and with two real life examples related to industry data, we compare the performances of classical and the Bayes estimates based on different loss functions and compared among the HPD credible intervals, three BCIs and ACIs in terms of coverage probabilities, average width, and respective relative coverages of the index Spmk , respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
广义指数分布Spmk的参数置信区间
摘要本文的目的是在潜在分布为广义指数时,使用新过程能力指数Spmk的最大似然和贝叶斯方法,将最高后验密度(HPD)可信区间与三个自举置信区间(BCI)以及渐近置信区间(ACI)进行比较。这一新指标可用于正常和非正常质量特性。通过广泛的模拟研究,并结合两个与行业数据相关的实际例子,我们比较了基于不同损失函数的经典估计和贝叶斯估计的性能,并分别就指数Spmk的覆盖概率、平均宽度和各自的相对覆盖率在HPD可信区间、三个BCI和ACI之间进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
American Journal of Mathematical and Management Sciences
American Journal of Mathematical and Management Sciences Business, Management and Accounting-Business, Management and Accounting (all)
CiteScore
2.70
自引率
0.00%
发文量
5
期刊最新文献
The Unit Omega Distribution, Properties and Its Application Classical and Bayesian Inference of Unit Gompertz Distribution Based on Progressively Type II Censored Data An Alternative Discrete Analogue of the Half-Logistic Distribution Based on Minimization of a Distance between Cumulative Distribution Functions Classical and Bayes Analyses of Autoregressive Model with Heavy-Tailed Error Testing on the Quantiles of a Single Normal Population in the Presence of Several Normal Populations with a Common Variance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1