Adaptive Colormap Optimization Based on Inserting Colors

Yongwei Zhao, Qiong Zeng, Yunhai Wang, Fan Zhong, Changhe Tu
{"title":"Adaptive Colormap Optimization Based on Inserting Colors","authors":"Yongwei Zhao, Qiong Zeng, Yunhai Wang, Fan Zhong, Changhe Tu","doi":"10.3724/sp.j.1089.2021.19266","DOIUrl":null,"url":null,"abstract":": Traditional automatic color optimization methods face the challenge of expressing global features in dynamic data ranges. To solve this problem, an adaptive colormap optimization method based on inserting colors is proposed, which includes a process of estimating color inserting position and an inserting color optimization procedure. Firstly, color inserting positions are selected based on color discriminability and data histo-gram distribution. By keeping the color inserting positions, corresponding embedding colors are estimated through a novel energy optimization equation under the guidance of visual discriminability and the consistency to the original colormap. On the basis of the algorithm, an interactive visual data exploratory system is pro-vided, which includes supporting global data perception and local ROI analysis. The effectiveness and applica-bility of the algorithm is evaluated via a user study and a case study, based on 6 colormaps with different color features and 8 datasets with different data distributions. The results demonstrate that proposed method can produce high quality visual data information compared with other algorithms, providing a condition for further data analysis.","PeriodicalId":52442,"journal":{"name":"计算机辅助设计与图形学学报","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"计算机辅助设计与图形学学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.3724/sp.j.1089.2021.19266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

: Traditional automatic color optimization methods face the challenge of expressing global features in dynamic data ranges. To solve this problem, an adaptive colormap optimization method based on inserting colors is proposed, which includes a process of estimating color inserting position and an inserting color optimization procedure. Firstly, color inserting positions are selected based on color discriminability and data histo-gram distribution. By keeping the color inserting positions, corresponding embedding colors are estimated through a novel energy optimization equation under the guidance of visual discriminability and the consistency to the original colormap. On the basis of the algorithm, an interactive visual data exploratory system is pro-vided, which includes supporting global data perception and local ROI analysis. The effectiveness and applica-bility of the algorithm is evaluated via a user study and a case study, based on 6 colormaps with different color features and 8 datasets with different data distributions. The results demonstrate that proposed method can produce high quality visual data information compared with other algorithms, providing a condition for further data analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于插入颜色的自适应色图优化
传统的自动颜色优化方法面临着在动态数据范围内表达全局特征的挑战。为了解决这一问题,提出了一种基于颜色插入的自适应色图优化方法,该方法包括颜色插入位置的估计过程和插入颜色的优化过程。首先,根据颜色可分辨性和数据的直方图分布选择颜色插入位置;通过保持颜色插入位置,在视觉可分辨性和与原颜色映射一致性的指导下,通过一种新的能量优化方程估计出相应的嵌入颜色。在此基础上,提出了一种支持全局数据感知和局部ROI分析的交互式可视化数据探索系统。通过用户研究和案例研究,基于6个具有不同颜色特征的颜色图和8个具有不同数据分布的数据集,评估了该算法的有效性和适用性。结果表明,与其他算法相比,该方法可以产生高质量的可视化数据信息,为进一步的数据分析提供了条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
计算机辅助设计与图形学学报
计算机辅助设计与图形学学报 Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
1.20
自引率
0.00%
发文量
6833
期刊介绍:
期刊最新文献
Error-Controlled Data Reduction Approach for Large-Scale Structured Datasets A Survey on the Visual Analytics for Data Ranking Element Layout Prediction with Sequential Operation Data Interactive Visual Analysis Engine for High-Performance CAE Simulations 3D Point Cloud Restoration via Deep Learning: A Comprehensive Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1