Insurance as an ergodicity problem

IF 1.5 Q3 BUSINESS, FINANCE Annals of Actuarial Science Pub Date : 2023-07-01 DOI:10.1017/s1748499523000131
O. Peters
{"title":"Insurance as an ergodicity problem","authors":"O. Peters","doi":"10.1017/s1748499523000131","DOIUrl":null,"url":null,"abstract":"In November 2014, the economist Ken Arrow and I had one of our long conversations about my efforts to re-imagine economic science from the perspective of the ergodicity problem (Peters, 2019). Ergodicity, as it pertains to economics, is about two different ways of averaging to deal with randomness. Let us say we measure some quantity at regularly spaced times t = 1 . . . T and model it as a stochastic process, x(t,ω), where ω denotes the realization of the process. If we want to reduce the process to a single informative number, we can average across the ensemble of realizations, yielding the expected value E [x] (t)= limN→∞ 1 N ∑N i x(t,ωi), or we can average across time, yielding the time average T [x] (ω)= limT→∞ 1 T ∑T t x(t,ωi), Fig. 1. If the process is ergodic, then the two ways of averaging will give the same result. We are interested in cases where this is not true.","PeriodicalId":44135,"journal":{"name":"Annals of Actuarial Science","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Actuarial Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1748499523000131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

In November 2014, the economist Ken Arrow and I had one of our long conversations about my efforts to re-imagine economic science from the perspective of the ergodicity problem (Peters, 2019). Ergodicity, as it pertains to economics, is about two different ways of averaging to deal with randomness. Let us say we measure some quantity at regularly spaced times t = 1 . . . T and model it as a stochastic process, x(t,ω), where ω denotes the realization of the process. If we want to reduce the process to a single informative number, we can average across the ensemble of realizations, yielding the expected value E [x] (t)= limN→∞ 1 N ∑N i x(t,ωi), or we can average across time, yielding the time average T [x] (ω)= limT→∞ 1 T ∑T t x(t,ωi), Fig. 1. If the process is ergodic, then the two ways of averaging will give the same result. We are interested in cases where this is not true.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
保险是一个遍历性问题
2014年11月,经济学家肯·阿罗(Ken Arrow)和我就我从遍历性问题的角度重新构想经济科学的努力进行了一次长谈(Peters, 2019)。在经济学中,遍历性是关于处理随机性的两种不同的平均方法。假设我们在规则间隔时间t = 1处测量某个量…T,并将其建模为随机过程x(T,ω),其中ω表示该过程的实现。如果我们想将过程简化为单个信息数,我们可以对实现集合进行平均,得到期望值E [x] (t)= limN→∞1 N∑N i x(t,ωi),或者我们可以对时间进行平均,得到时间平均值t [x] (ω)= limT→∞1 t∑t x(t,ωi),如图1所示。如果过程是遍历的,那么两种平均方法将得到相同的结果。我们感兴趣的是它不成立的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
5.90%
发文量
22
期刊最新文献
Generalized Poisson random variable: its distributional properties and actuarial applications Optimizing insurance risk assessment: a regression model based on a risk-loaded approach Bonus-Malus Scale premiums for Tweedie’s compound Poisson models Risk analysis of a multivariate aggregate loss model with dependence Valuation of guaranteed minimum accumulation benefits (GMABs) with physics-inspired neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1