Fixed accuracy estimation of parameters in a threshold autoregressive model

IF 0.6 4区 数学 Q3 STATISTICS & PROBABILITY Annals of the Institute of Statistical Mathematics Pub Date : 2021-10-18 DOI:10.1007/s10463-021-00812-4
Victor V. Konev, Sergey E. Vorobeychikov
{"title":"Fixed accuracy estimation of parameters in a threshold autoregressive model","authors":"Victor V. Konev,&nbsp;Sergey E. Vorobeychikov","doi":"10.1007/s10463-021-00812-4","DOIUrl":null,"url":null,"abstract":"<div><p>For parameters in a threshold autoregressive process, the paper proposes a sequential modification of the least squares estimates with a specific stopping rule for collecting the data for each parameter. In the case of normal residuals, these estimates are exactly normally distributed in a wide range of unknown parameters. On the base of these estimates, a fixed-size confidence ellipsoid covering true values of parameters with prescribed probability is constructed. In the i.i.d. case with unspecified error distributions, the sequential estimates are asymptotically normally distributed uniformly in parameters belonging to any compact set in the ergodicity parametric region. Small-sample behavior of the estimates is studied via simulation data.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":"74 4","pages":"685 - 711"},"PeriodicalIF":0.6000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-021-00812-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

For parameters in a threshold autoregressive process, the paper proposes a sequential modification of the least squares estimates with a specific stopping rule for collecting the data for each parameter. In the case of normal residuals, these estimates are exactly normally distributed in a wide range of unknown parameters. On the base of these estimates, a fixed-size confidence ellipsoid covering true values of parameters with prescribed probability is constructed. In the i.i.d. case with unspecified error distributions, the sequential estimates are asymptotically normally distributed uniformly in parameters belonging to any compact set in the ergodicity parametric region. Small-sample behavior of the estimates is studied via simulation data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阈值自回归模型中参数的固定精度估计
对于阈值自回归过程中的参数,本文提出了一种最小二乘估计的顺序修正方法,并为每个参数的数据采集设定了特定的停止规则。在正态残差的情况下,这些估计值在广泛的未知参数范围内完全正态分布。在这些估计的基础上,构造了一个固定大小的置信椭球,以规定的概率覆盖参数的真值。在误差分布不确定的i.i.d情况下,序列估计在遍历参数区域内任意紧集的参数中均匀渐近正态分布。通过模拟数据研究了估计的小样本行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.
期刊最新文献
Correction to: Hidden AR process and adaptive Kalman filter Discussion of “Mode-based estimation of the center of symmetry” Mode-based estimation of the center of symmetry Discussion of “Mode-based estimation of the center of symmetry” Rejoinder to the discussion of “Mode-based estimation of the center of symmetry”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1