Minimax Powerful Functional Analysis of Covariance Tests: with Application to Longitudinal Genome-Wide Association Studies.

Pub Date : 2023-03-01 Epub Date: 2022-03-13 DOI:10.1111/sjos.12583
Weicheng Zhu, Sheng Xu, Catherine Liu, Yehua Li
{"title":"Minimax Powerful Functional Analysis of Covariance Tests: with Application to Longitudinal Genome-Wide Association Studies.","authors":"Weicheng Zhu, Sheng Xu, Catherine Liu, Yehua Li","doi":"10.1111/sjos.12583","DOIUrl":null,"url":null,"abstract":"<p><p>We model the Alzheimer's Disease-related phenotype response variables observed on irregular time points in longitudinal Genome-Wide Association Studies as sparse functional data and propose nonparametric test procedures to detect functional genotype effects while controlling the confounding effects of environmental covariates. Our new functional analysis of covariance tests are based on a seemingly unrelated kernel smoother, which takes into account the within-subject temporal correlations, and thus enjoy improved power over existing functional tests. We show that the proposed test combined with a uniformly consistent nonparametric covariance function estimator enjoys the Wilks phenomenon and is minimax most powerful. Data used in the preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, where an application of the proposed test lead to the discovery of new genes that may be related to Alzheimer's Disease.</p>","PeriodicalId":74757,"journal":{"name":"","volume":"50 1","pages":"266-295"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286231/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/sjos.12583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We model the Alzheimer's Disease-related phenotype response variables observed on irregular time points in longitudinal Genome-Wide Association Studies as sparse functional data and propose nonparametric test procedures to detect functional genotype effects while controlling the confounding effects of environmental covariates. Our new functional analysis of covariance tests are based on a seemingly unrelated kernel smoother, which takes into account the within-subject temporal correlations, and thus enjoy improved power over existing functional tests. We show that the proposed test combined with a uniformly consistent nonparametric covariance function estimator enjoys the Wilks phenomenon and is minimax most powerful. Data used in the preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, where an application of the proposed test lead to the discovery of new genes that may be related to Alzheimer's Disease.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
协方差检验的Minimax强大函数分析及其在纵向全基因组关联研究中的应用
我们将纵向全基因组关联研究中在不规则时间点观察到的阿尔茨海默病相关表型反应变量建模为稀疏功能数据,并提出非参数检验程序来检测功能基因型效应,同时控制环境协变量的混杂效应。我们对协方差测试的新函数分析是基于一个看似无关的核平滑器,它考虑了受试者内部的时间相关性,因此比现有的函数测试具有更高的能力。我们证明了所提出的检验与一致一致一致的非参数协方差函数估计相结合,具有Wilks现象,并且是最强大的极小极大值。本文编写过程中使用的数据来自阿尔茨海默病神经成像倡议数据库,在该数据库中,拟议测试的应用导致了可能与阿尔茨海默病相关的新基因的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1