{"title":"Application and optimization of drag reduction characteristics on the flow around a partial grooved cylinder by using the response surface method","authors":"Xiaowen Song, Yuchen Qi, Mingxiao Zhang, Guogeng Zhang, Wen-Xiong Zhan","doi":"10.1080/19942060.2018.1562382","DOIUrl":null,"url":null,"abstract":"ABSTRACT It is well known that drag reduction occurs when the flow is passing by a grooved circular cylinder at certain Reynolds numbers, which has been used as a powerful energy saving method in a broad range of circumstances. However, a challenge here is how to evaluate the combined effects of depth, width and location of a given triangular groove set covering half of the cylindrical surface area. A useful approach to quantitatively analyze the influence of these different factors on drag reduction using the response surface methodology is described here. The flow characteristics, including drag coefficient, flow velocity, turbulent kinetic energy and vorticity, were calculated by numerical simulation. The results showed a great drag reduction effect under the legitimate set of groove structure parameters at a super-critical Reynolds number providing a base for optimization process in various engineering applications. The drag reduction mechanism found from this research could extend to other cases and should provide insights into engineering applications like car grilles.","PeriodicalId":50524,"journal":{"name":"Engineering Applications of Computational Fluid Mechanics","volume":"13 1","pages":"158 - 176"},"PeriodicalIF":5.4000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19942060.2018.1562382","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Computational Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/19942060.2018.1562382","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 15
Abstract
ABSTRACT It is well known that drag reduction occurs when the flow is passing by a grooved circular cylinder at certain Reynolds numbers, which has been used as a powerful energy saving method in a broad range of circumstances. However, a challenge here is how to evaluate the combined effects of depth, width and location of a given triangular groove set covering half of the cylindrical surface area. A useful approach to quantitatively analyze the influence of these different factors on drag reduction using the response surface methodology is described here. The flow characteristics, including drag coefficient, flow velocity, turbulent kinetic energy and vorticity, were calculated by numerical simulation. The results showed a great drag reduction effect under the legitimate set of groove structure parameters at a super-critical Reynolds number providing a base for optimization process in various engineering applications. The drag reduction mechanism found from this research could extend to other cases and should provide insights into engineering applications like car grilles.
期刊介绍:
The aim of Engineering Applications of Computational Fluid Mechanics is a continuous and timely dissemination of innovative, practical and industrial applications of computational techniques to solve the whole range of hitherto intractable fluid mechanics problems. The journal is a truly interdisciplinary forum and publishes original contributions on the latest advances in numerical methods in fluid mechanics and their applications to various engineering fields including aeronautic, civil, environmental, hydraulic and mechanical. The journal has a distinctive and balanced international contribution, with emphasis on papers addressing practical problem-solving by means of robust numerical techniques to generate precise flow prediction and optimum design, and those fostering the thorough understanding of the physics of fluid motion. It is an open access journal.