X-Ray Fluorescence Analysis Of Snow Cover Solid Phase For Investigation Of Emissions By Aluminum Industry And Combined Heat And Power Complex

IF 3.4 2区 化学 Q1 SPECTROSCOPY Atomic Spectroscopy Pub Date : 2023-06-25 DOI:10.46770/as.2023.115
A. Amosova
{"title":"X-Ray Fluorescence Analysis Of Snow Cover Solid Phase For Investigation Of Emissions By Aluminum Industry And Combined Heat And Power Complex","authors":"A. Amosova","doi":"10.46770/as.2023.115","DOIUrl":null,"url":null,"abstract":": X-ray fluorescence method was proposed for a determination of major elements in samples of snow cover solid phase collected in the urban areas of the Irkutsk region near aluminum smelter and combined heat and power plant. The limitation of the analyzed sample mass, which in some cases does not exceed 50 mg, as well as the features of the elemental composition (high Al and low Si contents) require a special methodological approach to quantitative elemental analysis. Due to the lack of matrix-matched certified reference materials, the calibration set includes certified reference materials of igneous and sedimentary rocks as well as aluminum ore samples. Results of X-ray fluorescence method were compared with the results obtained by reference methods including atomic absorption, atomic emission and spectrophotometry methods. It showed that it is necessary to use samples of snow cover solid phase analyzed by reference methods as a calibration set for X-ray fluorescence analysis, which ensures the quantitative determination of major elements (Na, Mg, Al, Si, P, K, Ca, Ti, Mn and Fe). These elements are important for environmental pollution investigation. Al was discovered as a main pollutant produced by aluminum smelter, Si, Ca, Ti, Mn, and Fe - by combined heat and power plant.","PeriodicalId":8642,"journal":{"name":"Atomic Spectroscopy","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.46770/as.2023.115","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

: X-ray fluorescence method was proposed for a determination of major elements in samples of snow cover solid phase collected in the urban areas of the Irkutsk region near aluminum smelter and combined heat and power plant. The limitation of the analyzed sample mass, which in some cases does not exceed 50 mg, as well as the features of the elemental composition (high Al and low Si contents) require a special methodological approach to quantitative elemental analysis. Due to the lack of matrix-matched certified reference materials, the calibration set includes certified reference materials of igneous and sedimentary rocks as well as aluminum ore samples. Results of X-ray fluorescence method were compared with the results obtained by reference methods including atomic absorption, atomic emission and spectrophotometry methods. It showed that it is necessary to use samples of snow cover solid phase analyzed by reference methods as a calibration set for X-ray fluorescence analysis, which ensures the quantitative determination of major elements (Na, Mg, Al, Si, P, K, Ca, Ti, Mn and Fe). These elements are important for environmental pollution investigation. Al was discovered as a main pollutant produced by aluminum smelter, Si, Ca, Ti, Mn, and Fe - by combined heat and power plant.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
雪覆盖固相的X射线荧光分析用于铝工业和热电联产企业排放调查
:提出了x射线荧光法测定在伊尔库茨克地区靠近铝冶炼厂和热电联产厂的城市地区收集的积雪固相样品中的主要元素。所分析样品质量的限制,在某些情况下不超过50毫克,以及元素组成的特点(高Al和低Si含量)需要一种特殊的定量元素分析方法。由于缺乏与基体匹配的认证标准物质,校准集包括火成岩和沉积岩的认证标准物质以及铝矿样品。将x射线荧光法测定的结果与原子吸收法、原子发射法和分光光度法测定的结果进行比较。结果表明,有必要将参考法分析的积雪固相样品作为x射线荧光分析的校准集,以保证主要元素(Na、Mg、Al、Si、P、K、Ca、Ti、Mn和Fe)的定量测定。这些要素对环境污染调查具有重要意义。铝是铝冶炼厂产生的主要污染物,硅、钙、钛、锰、铁是热电联产的主要污染物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atomic Spectroscopy
Atomic Spectroscopy 物理-光谱学
CiteScore
5.30
自引率
14.70%
发文量
42
审稿时长
4.5 months
期刊介绍: The ATOMIC SPECTROSCOPY is a peer-reviewed international journal started in 1962 by Dr. Walter Slavin and now is published by Atomic Spectroscopy Press Limited (ASPL). It is intended for the rapid publication of both original articles and review articles in the fields of AAS, AFS, ICP-OES, ICP-MS, GD-MS, TIMS, SIMS, AMS, LIBS, XRF and related techniques. Manuscripts dealing with (i) instrumentation & fundamentals, (ii) methodology development & applications, and (iii) standard reference materials (SRMs) development can be submitted for publication.
期刊最新文献
Determination of REEs in Seawater RMs (NASS-7, CASS-6, and NMIJ 7204-A) Using Online Automated Separation ICP-MS Analysis System A Glimpse Into The Nature Of Particles Created During Pulsed Laser Ablation Of Arsenic Compounds In Ambient Gases Determination Of Sb Isotope Ratios In Stibnite Using Fs-LA-MC-ICP-MS And Two Potential Reference Materials Study Atom Probe Tomography Reveals Nano-Scale Organic Remaining In Conodont A Spectral Optimization Method To Enhance Handheld LIBS For T91 Aging Grade Classification Using Lorentzian Profile And Kalman Filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1