The Partial L-Moment of the Four Kappa Distribution

Q1 Multidisciplinary Emerging Science Journal Pub Date : 2023-07-12 DOI:10.28991/esj-2023-07-04-06
Pannarat Guayjarernpanishk, Piyapatr Bussababodhin, Monchaya Chiangpradit
{"title":"The Partial L-Moment of the Four Kappa Distribution","authors":"Pannarat Guayjarernpanishk, Piyapatr Bussababodhin, Monchaya Chiangpradit","doi":"10.28991/esj-2023-07-04-06","DOIUrl":null,"url":null,"abstract":"Statistical analysis of extreme events such as flood events is often carried out to predict large return period events. The behaviour of extreme events not only involves heavy-tailed distributions but also skewed distributions, similar to the four-parameter Kappa distribution (K4D). In general, this covers many extreme distributions such as the generalized logistic distribution (GLD), the generalized extreme value distribution (GEV), the generalized Pareto distribution (GPD), and so on. To utilize these distributions, we have to estimate parameters accurately. There are many parameter estimation methods, for example, Method of Moments, Maximum Likelihood Estimator, L-Moments, or partial L-Moments. Nowadays, no researchers have applied the partial L-Moments method to estimate the parameters of K4D. Therefore, the objective of this paper is to derive the partial L-Moments (PL-Moments) for K4D, namely the PL-Moments of the K4D in order to estimate hydrological extremes from censored data. The findings of this paper are formulas of parameter estimation for K4D based on the PL-Moments approach. We have derived the Partial Probability-Weighted Moments (PPWMs) of the K4D (β'r) and derive the estimation of parameters when separated by shape parameters (k,h) conditions i.e., case k>-1 and h>0, case k>-1 and h=0 and case -1<k<-1/h and h<0. Finally, we expect that the parameter estimate for K4D from this formula will help to make accurate forecasts. Doi: 10.28991/ESJ-2023-07-04-06 Full Text: PDF","PeriodicalId":11586,"journal":{"name":"Emerging Science Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28991/esj-2023-07-04-06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 1

Abstract

Statistical analysis of extreme events such as flood events is often carried out to predict large return period events. The behaviour of extreme events not only involves heavy-tailed distributions but also skewed distributions, similar to the four-parameter Kappa distribution (K4D). In general, this covers many extreme distributions such as the generalized logistic distribution (GLD), the generalized extreme value distribution (GEV), the generalized Pareto distribution (GPD), and so on. To utilize these distributions, we have to estimate parameters accurately. There are many parameter estimation methods, for example, Method of Moments, Maximum Likelihood Estimator, L-Moments, or partial L-Moments. Nowadays, no researchers have applied the partial L-Moments method to estimate the parameters of K4D. Therefore, the objective of this paper is to derive the partial L-Moments (PL-Moments) for K4D, namely the PL-Moments of the K4D in order to estimate hydrological extremes from censored data. The findings of this paper are formulas of parameter estimation for K4D based on the PL-Moments approach. We have derived the Partial Probability-Weighted Moments (PPWMs) of the K4D (β'r) and derive the estimation of parameters when separated by shape parameters (k,h) conditions i.e., case k>-1 and h>0, case k>-1 and h=0 and case -1
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
四Kappa分布的偏l矩
经常对洪水等极端事件进行统计分析,以预测大型重现期事件。极端事件的行为不仅涉及重尾分布,还涉及偏斜分布,类似于四参数Kappa分布(K4D)。一般来说,这涵盖了许多极值分布,如广义逻辑分布(GLD)、广义极值分布(GEV)、广义帕累托分布(GPD)等。要利用这些分布,我们必须准确估计参数。有许多参数估计方法,例如矩量法、最大似然估计、L-Moments或部分L-Moments。目前,还没有研究人员应用偏L-Moments方法来估计K4D的参数。因此,本文的目的是推导K4D的部分L矩(PL矩),即K4D的PL矩,以便从截尾数据中估计水文极值。本文的研究结果是基于PL矩方法的K4D参数估计公式。我们导出了K4D(β’r)的部分概率加权矩(PPWMs),并导出了当由形状参数(k,h)条件分离时的参数估计,即,情况k>-1和h>0,情况k>1和h=0,以及情况-1
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1