Different Types of Constitutive Parameters Red Blood Cell Membrane Based on Machine Learning and FEM

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY International Journal of Computational Methods Pub Date : 2022-12-28 DOI:10.1142/s0219876222500578
Xinyu Wei, Jianbing Sang, Chuan Tian, Lifang Sun, Baoyou Liu
{"title":"Different Types of Constitutive Parameters Red Blood Cell Membrane Based on Machine Learning and FEM","authors":"Xinyu Wei, Jianbing Sang, Chuan Tian, Lifang Sun, Baoyou Liu","doi":"10.1142/s0219876222500578","DOIUrl":null,"url":null,"abstract":"Research on mechanical response of single red blood cells (RBCs) to mechanical stimuli and the complex material properties of erythrocyte membranes is significant. This work proposes a novel procedure that combines nonlinear finite element method and two machine learning algorithms including Two-Way Deepnets and XGboost together with experiments to identify the hyper elastic material parameters of erythrocyte membranes. Finite element models were established to simulate the stretching process of erythrocyte optical tweezers with different constitutive material parameters from three constitutive models. And the results from the finite element analysis were carried out to generate the training sets for the neural networks. In order to validate the predictions in great detail, the finite element response curves based on the three groups of predicted constitutive parameters are compared with the experimental data. The comparison results show that the Two-Way Deepnets model has performed better efficiency and accuracy and that Reduced Polynomial can describe more precisely the hyperelastic properties of the erythrocyte membrane in the range of experimentally obtained characteristics of single RBCs. This research provides new insights into the identification of constitutive parameters of biological cell membranes, which is crucial for the future research on mechanical mechanisms of the biological cells.","PeriodicalId":54968,"journal":{"name":"International Journal of Computational Methods","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Methods","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1142/s0219876222500578","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Research on mechanical response of single red blood cells (RBCs) to mechanical stimuli and the complex material properties of erythrocyte membranes is significant. This work proposes a novel procedure that combines nonlinear finite element method and two machine learning algorithms including Two-Way Deepnets and XGboost together with experiments to identify the hyper elastic material parameters of erythrocyte membranes. Finite element models were established to simulate the stretching process of erythrocyte optical tweezers with different constitutive material parameters from three constitutive models. And the results from the finite element analysis were carried out to generate the training sets for the neural networks. In order to validate the predictions in great detail, the finite element response curves based on the three groups of predicted constitutive parameters are compared with the experimental data. The comparison results show that the Two-Way Deepnets model has performed better efficiency and accuracy and that Reduced Polynomial can describe more precisely the hyperelastic properties of the erythrocyte membrane in the range of experimentally obtained characteristics of single RBCs. This research provides new insights into the identification of constitutive parameters of biological cell membranes, which is crucial for the future research on mechanical mechanisms of the biological cells.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习和有限元的不同类型红细胞膜本构参数
研究单个红细胞对机械刺激的机械反应和红细胞膜的复杂材料特性具有重要意义。本文提出了一种新的方法,将非线性有限元方法和两种机器学习算法(包括双向深度网和XGboost)与实验相结合,来识别红细胞膜的超弹性材料参数。从三个本构模型出发,建立了不同本构材料参数下红细胞光镊子拉伸过程的有限元模型。并将有限元分析的结果用于生成神经网络的训练集。为了更详细地验证预测,将基于三组预测本构参数的有限元响应曲线与实验数据进行了比较。比较结果表明,双向深度网模型具有更好的效率和准确性,并且在实验获得的单个红细胞特征范围内,简化多项式可以更准确地描述红细胞膜的超弹性特性。这项研究为识别生物细胞膜的组成参数提供了新的见解,这对未来研究生物细胞的力学机制至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Computational Methods
International Journal of Computational Methods ENGINEERING, MULTIDISCIPLINARY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
3.30
自引率
17.60%
发文量
84
审稿时长
15 months
期刊介绍: The purpose of this journal is to provide a unique forum for the fast publication and rapid dissemination of original research results and innovative ideas on the state-of-the-art on computational methods. The methods should be innovative and of high scholarly, academic and practical value. The journal is devoted to all aspects of modern computational methods including mathematical formulations and theoretical investigations; interpolations and approximation techniques; error analysis techniques and algorithms; fast algorithms and real-time computation; multi-scale bridging algorithms; adaptive analysis techniques and algorithms; implementation, coding and parallelization issues; novel and practical applications. The articles can involve theory, algorithm, programming, coding, numerical simulation and/or novel application of computational techniques to problems in engineering, science, and other disciplines related to computations. Examples of fields covered by the journal are: Computational mechanics for solids and structures, Computational fluid dynamics, Computational heat transfer, Computational inverse problem, Computational mathematics, Computational meso/micro/nano mechanics, Computational biology, Computational penetration mechanics, Meshfree methods, Particle methods, Molecular and Quantum methods, Advanced Finite element methods, Advanced Finite difference methods, Advanced Finite volume methods, High-performance computing techniques.
期刊最新文献
Sound insulation characteristics of sandwich thin-plate acoustic metamaterial: analysis and optimization Meshless technique based on moving least squares approximation for numerical solutions of linear and nonlinear third-kind VIEs Enhancement of Heat Transfer in the Copper Square Duct with Ribs in the Application of Gas Turbine Blade Cooling Systems: A Hybrid Approach On Cauchy problem solution for a harmonic function in a simply connected domain with multi-component boundary Deflection, stresses and buckling analysis of porous FGM plates with Kerr-type elastic foundations using a new five-unknown trigonometric shear deformation theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1