Active Turbulence Grid-Controlled Inflow Turbulence and Replication of Heat Exchanger Flow Fields in Fan Applications

IF 1.3 Q2 ENGINEERING, AEROSPACE International Journal of Turbomachinery, Propulsion and Power Pub Date : 2023-01-04 DOI:10.3390/ijtpp8010001
F. Czwielong, S. Becker
{"title":"Active Turbulence Grid-Controlled Inflow Turbulence and Replication of Heat Exchanger Flow Fields in Fan Applications","authors":"F. Czwielong, S. Becker","doi":"10.3390/ijtpp8010001","DOIUrl":null,"url":null,"abstract":"A novel active turbulence grid of the Institute of Fluid Mechanics at FAU Erlangen-Nuremberg is introduced. The focus of this grid is not on basic investigations of fluid mechanics, as is usually the case with active turbulence grids, but the generation of defined inflow conditions for axial fans. Thus, by means of the active turbulence grid, individual turbulence characteristics in the flow to the fan can be changed; therefore, fundamental interactions between the flow mechanics at the axial fan and the sound radiation can be analyzed. In addition, the replication of the flow fields of heat exchangers by the active turbulence grid is the focus of the investigations. The investigations showed that it is possible to use the active turbulence grid to generate defined inflow conditions for axial fans. It was also possible to reproduce the heat exchanger flow fields both for the mean turbulence values and for the spatial distributions. It was found that the grid induces tonal components due to the drive motors, but also that the inherent noise has no significant influence on the spectrum of the fans under investigation. Based on selected turbulence characteristics, direct correlations were found between the spatial distribution of the turbulence level and sound radiation at the first blade passing frequency of the axial fan. As the variance of the turbulence level increases, the sound radiation of the tonal components becomes more pronounced. The total sound pressure level, however, is mainly determined by the low-frequency broadband sound. A linear relationship between the spatial mean value of the turbulence level and the total sound pressure level was found for the investigated axial fan.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbomachinery, Propulsion and Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ijtpp8010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

A novel active turbulence grid of the Institute of Fluid Mechanics at FAU Erlangen-Nuremberg is introduced. The focus of this grid is not on basic investigations of fluid mechanics, as is usually the case with active turbulence grids, but the generation of defined inflow conditions for axial fans. Thus, by means of the active turbulence grid, individual turbulence characteristics in the flow to the fan can be changed; therefore, fundamental interactions between the flow mechanics at the axial fan and the sound radiation can be analyzed. In addition, the replication of the flow fields of heat exchangers by the active turbulence grid is the focus of the investigations. The investigations showed that it is possible to use the active turbulence grid to generate defined inflow conditions for axial fans. It was also possible to reproduce the heat exchanger flow fields both for the mean turbulence values and for the spatial distributions. It was found that the grid induces tonal components due to the drive motors, but also that the inherent noise has no significant influence on the spectrum of the fans under investigation. Based on selected turbulence characteristics, direct correlations were found between the spatial distribution of the turbulence level and sound radiation at the first blade passing frequency of the axial fan. As the variance of the turbulence level increases, the sound radiation of the tonal components becomes more pronounced. The total sound pressure level, however, is mainly determined by the low-frequency broadband sound. A linear relationship between the spatial mean value of the turbulence level and the total sound pressure level was found for the investigated axial fan.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
主动湍流网格控制的入流湍流和风机应用中换热器流场的复制
介绍了德国埃尔兰根-纽伦堡大学流体力学研究所的一种新型主动湍流网格。该网格的重点不是流体力学的基本研究,而通常是主动湍流网格的情况,而是轴流风机的定义流入条件的生成。因此,通过主动湍流网格,可以改变流向风机的单个湍流特性;因此,可以分析轴流风机的流动力学与声辐射之间的基本相互作用。此外,主动湍流网格对换热器流场的复制也是研究的重点。研究表明,可以使用主动湍流网格来产生轴流风机的特定流入条件。对于平均湍流值和空间分布,也可以重现换热器流场。研究发现,由于驱动电机的存在,网格会产生音调分量,但固有噪声对所研究的风扇的频谱没有显著影响。在选取湍流特性的基础上,发现了轴流风机第一叶片通过频率处的湍流度空间分布与声辐射之间的直接相关关系。随着湍流度变化的增加,音调分量的声辐射变得更加明显。而总声压级主要由低频宽带声决定。对所研究的轴流风机,湍流度的空间平均值与总声压级之间存在线性关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
21.40%
发文量
29
审稿时长
11 weeks
期刊最新文献
Turbofan Performance Estimation Using Neural Network Component Maps and Genetic Algorithm-Least Squares Solvers Experimental Investigation of an Efficient and Lightweight Designed Counter-Rotating Shrouded Fan Stage Experimental Investigation of the Sensitivity of Forced Response to Cold Streaks in an Axial Turbine Heat Load Development and Heat Map Sensitivity Analysis for Civil Aero-Engines Numerical Investigation of Forced Response in a Transonic Compressor Stage—Highlighting Challenges Using Experimental Validation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1