Caveats of fungal barcoding: a case study in Trametes s.lat. (Basidiomycota: Polyporales) in Vietnam reveals multiple issues with mislabelled reference sequences and calls for third-party annotations
R. Lücking, B. Truong, Dang Thi Thu Huong, Ngoc Han Le, Q. D. Nguyen, Van Dat Nguyen, E. Raab-Straube, S. Bollendorff, K. Govers, Vanessa Di Vincenzo
{"title":"Caveats of fungal barcoding: a case study in Trametes s.lat. (Basidiomycota: Polyporales) in Vietnam reveals multiple issues with mislabelled reference sequences and calls for third-party annotations","authors":"R. Lücking, B. Truong, Dang Thi Thu Huong, Ngoc Han Le, Q. D. Nguyen, Van Dat Nguyen, E. Raab-Straube, S. Bollendorff, K. Govers, Vanessa Di Vincenzo","doi":"10.3372/wi.50.50302","DOIUrl":null,"url":null,"abstract":"Abstract: DNA barcoding using the nuclear internal transcribed spacer (ITS) has become prevalent in surveys of fungal diversity. This approach is, however, associated with numerous caveats, including the desire for speed, rather than accuracy, through the use of automated analytical pipelines, and the shortcomings of reference sequence repositories. Here we use the case of a specimen of the bracket fungus Trametes s.lat. (which includes the common and widespread turkey tail, T. versicolor) to illustrate these problems. The material was collected in Vietnam as part of a biodiversity inventory including DNA barcoding approaches for arthropods, plants and fungi. The ITS barcoding sequence of the query taxon was compared against reference sequences in GenBank and the curated fungal ITS database UNITE, using BLASTn and MegaBLAST, and was subsequently analysed in a multiple alignment-based phylogenetic context through a maximum likelihood tree including related sequences. Our results initially indicated issues with BLAST searches, including the use of pairwise local alignments and sorting through Total score and E value, rather than Percentage identity, as major shortcomings of the DNA barcoding approach. However, after thorough analysis of the results, we concluded that the single most important problem of this approach was incorrect sequence labelling, calling for the implementation of third-party annotations or analogous approaches in primary sequence repositories. In addition, this particular example revealed problems of improper fungal nomenclature, which required reinstatement of the genus name Cubamyces (= Leiotrametes), with three new combinations: C. flavidus, C. lactineus and C. menziesii. The latter was revealed as the correct identification of the query taxon, although the name did not appear among the best BLAST hits. While the best BLAST hits did correspond to the target taxon in terms of sequence data, their label names were misleading or unresolved, including [Fungal endophyte], [Uncultured fungus], Basidiomycota, Trametes cf. cubensis, Lenzites elegans and Geotrichum candidum (an unrelated ascomycetous contaminant). Our study demonstrates that accurate identification of fungi through molecular barcoding is currently not a fast-track approach that can be achieved through automated pipelines. Citation: Lücking R., Truong B. V., Huong D. T. T., Le N. H., Nguyen Q. D., Nguyen V. D., Raab-Straube E. von, Bollendorff S., Govers K. & Di Vincenzo V. 2020: Caveats of fungal barcoding: a case study in Trametes s.lat. (Basidiomycota: Polyporales) in Vietnam reveals multiple issues with mislabelled reference sequences and calls for third-party annotations. – Willdenowia 50: 383–403. doi: https://doi.org/10.3372/wi.50.50302 Version of record first published online on 15 September 2020 ahead of inclusion in December 2020 issue.","PeriodicalId":48969,"journal":{"name":"Willdenowia","volume":"50 1","pages":"383 - 403"},"PeriodicalIF":1.8000,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Willdenowia","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3372/wi.50.50302","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 8
Abstract
Abstract: DNA barcoding using the nuclear internal transcribed spacer (ITS) has become prevalent in surveys of fungal diversity. This approach is, however, associated with numerous caveats, including the desire for speed, rather than accuracy, through the use of automated analytical pipelines, and the shortcomings of reference sequence repositories. Here we use the case of a specimen of the bracket fungus Trametes s.lat. (which includes the common and widespread turkey tail, T. versicolor) to illustrate these problems. The material was collected in Vietnam as part of a biodiversity inventory including DNA barcoding approaches for arthropods, plants and fungi. The ITS barcoding sequence of the query taxon was compared against reference sequences in GenBank and the curated fungal ITS database UNITE, using BLASTn and MegaBLAST, and was subsequently analysed in a multiple alignment-based phylogenetic context through a maximum likelihood tree including related sequences. Our results initially indicated issues with BLAST searches, including the use of pairwise local alignments and sorting through Total score and E value, rather than Percentage identity, as major shortcomings of the DNA barcoding approach. However, after thorough analysis of the results, we concluded that the single most important problem of this approach was incorrect sequence labelling, calling for the implementation of third-party annotations or analogous approaches in primary sequence repositories. In addition, this particular example revealed problems of improper fungal nomenclature, which required reinstatement of the genus name Cubamyces (= Leiotrametes), with three new combinations: C. flavidus, C. lactineus and C. menziesii. The latter was revealed as the correct identification of the query taxon, although the name did not appear among the best BLAST hits. While the best BLAST hits did correspond to the target taxon in terms of sequence data, their label names were misleading or unresolved, including [Fungal endophyte], [Uncultured fungus], Basidiomycota, Trametes cf. cubensis, Lenzites elegans and Geotrichum candidum (an unrelated ascomycetous contaminant). Our study demonstrates that accurate identification of fungi through molecular barcoding is currently not a fast-track approach that can be achieved through automated pipelines. Citation: Lücking R., Truong B. V., Huong D. T. T., Le N. H., Nguyen Q. D., Nguyen V. D., Raab-Straube E. von, Bollendorff S., Govers K. & Di Vincenzo V. 2020: Caveats of fungal barcoding: a case study in Trametes s.lat. (Basidiomycota: Polyporales) in Vietnam reveals multiple issues with mislabelled reference sequences and calls for third-party annotations. – Willdenowia 50: 383–403. doi: https://doi.org/10.3372/wi.50.50302 Version of record first published online on 15 September 2020 ahead of inclusion in December 2020 issue.
期刊介绍:
Willdenowia is an international peer-reviewed journal publishing original research articles in English from the entire fields of plant, algal and fungal systematics, covering the evolution, taxonomy and nomenclature of these organisms as well as related fields such as floristics and plant geography. Articles on phylogeny and molecular systematics are especially welcome, as are review articles. Descriptions of new taxa may be considered, but only if supported by robust evidence. Narrowly regional studies of widespread taxa, routine typifications, checklists and new floristic records are generally not considered (excluding contributions to the Euro+Med-Checklist Notulae). Authors are encouraged to deposit duplicates of their material, especially nomenclatural types, in the Berlin herbarium (B).