{"title":"Templatized Fused Vector Floating-Point Dot Product for High-Level Synthesis","authors":"D. Filippas, C. Nicopoulos, G. Dimitrakopoulos","doi":"10.3390/jlpea12040056","DOIUrl":null,"url":null,"abstract":"Machine-learning accelerators rely on floating-point matrix and vector multiplication kernels. To reduce their cost, customized many-term fused architectures are preferred, which improve the latency, power, and area of the designs. In this work, we design a parameterized fused many-term floating-point dot product architecture that is ready for high-level synthesis. In this way, we can exploit the efficiency offered by a well-structured fused dot-product architecture and the freedom offered by high-level synthesis in tuning the design’s pipeline to the selected floating-point format and architectural constraints. When compared with optimized dot-product units implemented directly in RTL, the proposed design offers lower-latency implementations under the same clock frequency with marginal area savings. This result holds for a variety of floating-point formats, including standard and reduced-precision representations.","PeriodicalId":38100,"journal":{"name":"Journal of Low Power Electronics and Applications","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Power Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jlpea12040056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
Machine-learning accelerators rely on floating-point matrix and vector multiplication kernels. To reduce their cost, customized many-term fused architectures are preferred, which improve the latency, power, and area of the designs. In this work, we design a parameterized fused many-term floating-point dot product architecture that is ready for high-level synthesis. In this way, we can exploit the efficiency offered by a well-structured fused dot-product architecture and the freedom offered by high-level synthesis in tuning the design’s pipeline to the selected floating-point format and architectural constraints. When compared with optimized dot-product units implemented directly in RTL, the proposed design offers lower-latency implementations under the same clock frequency with marginal area savings. This result holds for a variety of floating-point formats, including standard and reduced-precision representations.