{"title":"YOLO-v5 Variant Selection Algorithm Coupled with Representative Augmentations for Modelling Production-Based Variance in Automated Lightweight Pallet Racking Inspection","authors":"Muhammad Hussain","doi":"10.3390/bdcc7020120","DOIUrl":null,"url":null,"abstract":"The aim of this research is to develop an automated pallet inspection architecture with two key objectives: high performance with respect to defect classification and computational efficacy, i.e., lightweight footprint. As automated pallet racking via machine vision is a developing field, the procurement of racking datasets can be a difficult task. Therefore, the first contribution of this study was the proposal of several tailored augmentations that were generated based on modelling production floor conditions/variances within warehouses. Secondly, the variant selection algorithm was proposed, starting with extreme-end analysis and providing a protocol for selecting the optimal architecture with respect to accuracy and computational efficiency. The proposed YOLO-v5n architecture generated the highest MAP@0.5 of 96.8% compared to previous works in the racking domain, with a computational footprint in terms of the number of parameters at its lowest, i.e., 1.9 M compared to YOLO-v5x at 86.7 M.","PeriodicalId":36397,"journal":{"name":"Big Data and Cognitive Computing","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/bdcc7020120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this research is to develop an automated pallet inspection architecture with two key objectives: high performance with respect to defect classification and computational efficacy, i.e., lightweight footprint. As automated pallet racking via machine vision is a developing field, the procurement of racking datasets can be a difficult task. Therefore, the first contribution of this study was the proposal of several tailored augmentations that were generated based on modelling production floor conditions/variances within warehouses. Secondly, the variant selection algorithm was proposed, starting with extreme-end analysis and providing a protocol for selecting the optimal architecture with respect to accuracy and computational efficiency. The proposed YOLO-v5n architecture generated the highest MAP@0.5 of 96.8% compared to previous works in the racking domain, with a computational footprint in terms of the number of parameters at its lowest, i.e., 1.9 M compared to YOLO-v5x at 86.7 M.