Development of Split-Protein Systems: From Binary to Ternary System

Shengyi Shen
{"title":"Development of Split-Protein Systems: From Binary to Ternary System","authors":"Shengyi Shen","doi":"10.4236/ABB.2021.123006","DOIUrl":null,"url":null,"abstract":"Tens of thousands of protein-protein interactions (PPIs) have been found in human cells and many of these macromolecular partnerships could determine the cell growth and death. Thus there is a need to develop the methods to catalogue these macromolecules by detecting their interactions, modifications, and cellular locations. It will be helpful for scientists to compare the difference between a diseased cellular state and its normal state and to find the potential therapy treatment to intervene this status. One technology called split-protein reassembly or protein fragment complementation has been developed in the last two decades. This technology makes use of appropriate fragmentation of some protein reporters and the refolding of these reports could be detected by their function to confirm the interaction of interest. This system has been set up in cell-free systems, E. coli, yeast, mammalian cells, plants and live animals. Herein, I present the development in fluorescence- and bioluminescence-based split-protein biosensors in both binary and ternary systems. In addition, some people developed the split-protein system by combining it with chemical inducer of dimerization strategy (CID). This has been applied for identifying the enzyme inhibitors and regulating the activity of protein kinases and phosphatases. With effort from many laboratories from the world, a variety of split-protein systems have been developed for studying the PPI in vitro and in vivo, monitoring the biological process, and controlling the activity of the enzyme of interest.","PeriodicalId":65405,"journal":{"name":"生命科学与技术进展(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生命科学与技术进展(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/ABB.2021.123006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tens of thousands of protein-protein interactions (PPIs) have been found in human cells and many of these macromolecular partnerships could determine the cell growth and death. Thus there is a need to develop the methods to catalogue these macromolecules by detecting their interactions, modifications, and cellular locations. It will be helpful for scientists to compare the difference between a diseased cellular state and its normal state and to find the potential therapy treatment to intervene this status. One technology called split-protein reassembly or protein fragment complementation has been developed in the last two decades. This technology makes use of appropriate fragmentation of some protein reporters and the refolding of these reports could be detected by their function to confirm the interaction of interest. This system has been set up in cell-free systems, E. coli, yeast, mammalian cells, plants and live animals. Herein, I present the development in fluorescence- and bioluminescence-based split-protein biosensors in both binary and ternary systems. In addition, some people developed the split-protein system by combining it with chemical inducer of dimerization strategy (CID). This has been applied for identifying the enzyme inhibitors and regulating the activity of protein kinases and phosphatases. With effort from many laboratories from the world, a variety of split-protein systems have been developed for studying the PPI in vitro and in vivo, monitoring the biological process, and controlling the activity of the enzyme of interest.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分裂蛋白体系的发展:从二元到三元体系
在人类细胞中已经发现了数以万计的蛋白质-蛋白质相互作用(PPI),其中许多大分子伙伴关系可以决定细胞的生长和死亡。因此,有必要开发通过检测这些大分子的相互作用、修饰和细胞位置来对其进行编目的方法。这将有助于科学家比较患病细胞状态与其正常状态之间的差异,并找到干预这种状态的潜在治疗方法。在过去的二十年里,一种名为分裂蛋白重组或蛋白质片段互补的技术已经发展起来。这项技术利用了一些蛋白质报告子的适当片段,这些报告子的重折叠可以通过它们的功能来检测,以确认感兴趣的相互作用。该系统已在无细胞系统、大肠杆菌、酵母、哺乳动物细胞、植物和活体动物中建立。在此,我介绍了二元和三元系统中基于荧光和生物发光的分裂蛋白生物传感器的发展。此外,一些人通过将其与二聚化策略的化学诱导剂(CID)相结合来开发分裂蛋白系统。这已被用于鉴定酶抑制剂和调节蛋白激酶和磷酸酶的活性。在世界上许多实验室的努力下,已经开发了各种分裂蛋白系统,用于在体外和体内研究PPI,监测生物过程,并控制感兴趣的酶的活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
851
期刊最新文献
Investigating a Vitamin D Delivery Toothpaste Using a Penetration Enhancer Compound Positive Correlation between PMS2 Deficiency and PD-L1 Expression in Pancreatic Cancer Megamitochondria Initiate Differentiation of Monolayer Cells into Detached Dome Cells That Proliferate by a Schizogony-Like Amitotic Process Effect of Long-Term Inorganic Fertilization on Diversity and Abundance of Bacterial and Archaeal Communities at Tillage in Irrigated Rice Field Urinary Tract Infections in a Tunisian Orthopedic Institute: Major Strain Microbiological Profile
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1