Time-Efficient Load Flow Technique for Radial Distribution Systems with Voltage-Dependent Loads

U. Ghatak, V. Mukherjee, A. Abdelaziz, S. Aleem, H. Mageed
{"title":"Time-Efficient Load Flow Technique for Radial Distribution Systems with Voltage-Dependent Loads","authors":"U. Ghatak, V. Mukherjee, A. Abdelaziz, S. Aleem, H. Mageed","doi":"10.15866/IRECON.V6I6.15765","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient load flow (LF) technique that exhibits an improved convergence characteristic to be employed in balanced radial distribution systems (RDSs) having voltage dependent loads (VDLs). The key enabler of this approach is the construction of load injection to bus voltage (LIBV) matrix that is utilized to carry out the backward forward sweep of power flow calculation in a single step. The bus voltages may be determined from the load injection directly by incorporating the LIBV matrix which, in turn, decreases the execution time when compared to other LF techniques. Further, a novel and generalized algorithm is proposed to construct LIBV in a fast manner. In addition, the effect of annual load growth is examined in this work. The proposed technique is tested on three balanced benchmark RDSs, which are the 30-, 33- and 118-bus systems with different VDL models. The obtained results demonstrate the effectiveness of the proposed approach compared to the results of the other approaches in the literature. Also, it is revealed that the proposed algorithm is computationally faster and more robust than the conventional LF techniques that are used to analyze distribution system having VDLs.","PeriodicalId":37583,"journal":{"name":"International Journal on Energy Conversion","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Energy Conversion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15866/IRECON.V6I6.15765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents an efficient load flow (LF) technique that exhibits an improved convergence characteristic to be employed in balanced radial distribution systems (RDSs) having voltage dependent loads (VDLs). The key enabler of this approach is the construction of load injection to bus voltage (LIBV) matrix that is utilized to carry out the backward forward sweep of power flow calculation in a single step. The bus voltages may be determined from the load injection directly by incorporating the LIBV matrix which, in turn, decreases the execution time when compared to other LF techniques. Further, a novel and generalized algorithm is proposed to construct LIBV in a fast manner. In addition, the effect of annual load growth is examined in this work. The proposed technique is tested on three balanced benchmark RDSs, which are the 30-, 33- and 118-bus systems with different VDL models. The obtained results demonstrate the effectiveness of the proposed approach compared to the results of the other approaches in the literature. Also, it is revealed that the proposed algorithm is computationally faster and more robust than the conventional LF techniques that are used to analyze distribution system having VDLs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有电压相关负荷的径向配电系统时效潮流技术
本文提出了一种高效潮流(LF)技术,该技术具有改进的收敛特性,可用于具有电压相关负载(VDL)的平衡径向配电系统(RDS)。这种方法的关键促成因素是构建负载注入到总线电压(LIBV)矩阵,该矩阵用于在一个步骤中执行功率流的前向扫描计算。总线电压可以通过结合LIBV矩阵直接从负载注入中确定,与其他LF技术相比,LIBV矩阵又减少了执行时间。此外,提出了一种新的广义算法来快速构建LIBV。此外,本文还考察了年负荷增长的影响。所提出的技术在三个平衡基准RDS上进行了测试,这三个基准RDS是具有不同VDL模型的30、33和118总线系统。与文献中其他方法的结果相比,所获得的结果证明了所提出的方法的有效性。此外,还表明,与用于分析具有VDL的配电系统的传统LF技术相比,所提出的算法在计算上更快、更鲁棒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal on Energy Conversion
International Journal on Energy Conversion Energy-Nuclear Energy and Engineering
CiteScore
3.30
自引率
0.00%
发文量
8
期刊介绍: The International Journal on Energy Conversion (IRECON) is a peer-reviewed journal that publishes original theoretical and applied papers on all aspects regarding energy conversion. It is intended to be a cross disciplinary and internationally journal aimed at disseminating results of research on energy conversion. The topics to be covered include but are not limited to: generation of electrical energy for general industrial, commercial, public, and domestic consumption and electromechanical energy conversion for the use of electrical energy, renewable energy conversion, thermoelectricity, thermionic, photoelectric, thermal-photovoltaic, magneto-hydrodynamic, chemical, Brayton, Diesel, Rankine and combined cycles, and Stirling engines, hydrogen and other advanced fuel cells, all sources forms and storage and uses and all conversion phenomena of energy, static or dynamic conversion systems and processes and energy storage (for example solar, nuclear, fossil, geothermal, wind, hydro, and biomass, process heat, electrolysis, heating and cooling, electrical, mechanical and thermal storage units), energy efficiency and management, sustainable energy, heat pipes and capillary pumped loops, thermal management of spacecraft, space and terrestrial power systems, hydrogen production and storage, nuclear power, single and combined cycles, miniaturized energy conversion and power systems, fuel cells and advanced batteries, industrial, civil, automotive, airspace and naval applications on energy conversion. The Editorial policy is to maintain a reasonable balance between papers regarding different research areas so that the Journal will be useful to all interested scientific groups.
期刊最新文献
Analysis of Convergence Behavior and Derivation of Divergence Indicator in Continuation Power Flow Iterations Energy Analysis of a H2O-LiBr Absorption Cooling System Under the Climatic Conditions of Senegal Evaluation of the Economic, Environmental and Energy Performance of Generation Technologies for Use as Backup Sources The Experimental Study of Photovoltaic Performance Improvement Using Multiple Reflectors Inter-Turn Fault Resilient Controls of a PMSM-Based Tidal Stream Turbine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1