{"title":"The Notions of Center, Commutator and Inner Isomorphism for Groupoids","authors":"J. Ávila, Víctor Marín","doi":"10.17230/ingciencia.16.31.1","DOIUrl":null,"url":null,"abstract":"In this paper we introduce some algebraic properties of subgroupoids and normal subgroupoids. we define other things, we define the normalizer of a wide subgroupoid H of a groupoid G and show that, as in the case of groups, this normalizer is the greatest wide subgroupoid of G in which H is normal. Furthermore, we provide definitions of the center Z(G) and the commutator G' of the groupoid G and prove that both of them are normal subgroupoids. We give the notions of inner and partial isomorphism of G and show that the groupoid I(G) given by the set of all the inner isomorphisms of G is a normal subgroupoid of A(G), the set of all the partial isomorphisms of G. Moreover, we prove that I(G) is isomorphic to the quotient groupoid G/Z(G), which extends to groupoids the corresponding well-known result for groups.","PeriodicalId":30405,"journal":{"name":"Ingenieria y Ciencia","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ingenieria y Ciencia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17230/ingciencia.16.31.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper we introduce some algebraic properties of subgroupoids and normal subgroupoids. we define other things, we define the normalizer of a wide subgroupoid H of a groupoid G and show that, as in the case of groups, this normalizer is the greatest wide subgroupoid of G in which H is normal. Furthermore, we provide definitions of the center Z(G) and the commutator G' of the groupoid G and prove that both of them are normal subgroupoids. We give the notions of inner and partial isomorphism of G and show that the groupoid I(G) given by the set of all the inner isomorphisms of G is a normal subgroupoid of A(G), the set of all the partial isomorphisms of G. Moreover, we prove that I(G) is isomorphic to the quotient groupoid G/Z(G), which extends to groupoids the corresponding well-known result for groups.