{"title":"An optimal hybrid cascade regional convolutional network for cyberattack detection","authors":"Ali Alqahtani, Surbhi Bhatia Khan","doi":"10.1002/nem.2247","DOIUrl":null,"url":null,"abstract":"<p>Cyber-physical systems (CPS) and the Internet of Things (IoT) technologies link urban systems through networks and improve the delivery of quality services to residents. To enhance municipality services, information and communication technologies (ICTs) are integrated with urban systems. However, the large number of sensors in a smart city generates a significant amount of delicate data, like medical records, credit card numerics, and location coordinates, which are transported across a network to data centers for analysis and processing. This makes smart cities vulnerable to cyberattacks because of the resource constraints of their technology infrastructure. Applications for smart cities pose many security challenges, such as zero-day attacks resulting from exploiting weaknesses in various protocols. Therefore, this paper proposes an optimal hybrid transit search-cascade regional convolutional neural network (hybrid TS-Cascade R-CNN) to detect cyberattacks. The proposed model combines the hybrid transit-search approach with the cascade regional convolutional neural network to create an optimal solution for cyberattack detection. The cascade regional convolutional network uses a hybrid transit search algorithm to enhance the effectiveness of cyberattack detection. By integrating these two approaches, the system can leverage both global traffic patterns and local indicators to improve the accuracy of attack detection. During the training process, the proposed model recognizes and classifies malicious input even in the presence of sophisticated attacks. Finally, the experimental analysis is carried out for various attacks based on different metrics. The accuracy rate attained by the proposed approach is 99.2%, which is acceptable according to standards.</p>","PeriodicalId":14154,"journal":{"name":"International Journal of Network Management","volume":"34 5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Network Management","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nem.2247","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Cyber-physical systems (CPS) and the Internet of Things (IoT) technologies link urban systems through networks and improve the delivery of quality services to residents. To enhance municipality services, information and communication technologies (ICTs) are integrated with urban systems. However, the large number of sensors in a smart city generates a significant amount of delicate data, like medical records, credit card numerics, and location coordinates, which are transported across a network to data centers for analysis and processing. This makes smart cities vulnerable to cyberattacks because of the resource constraints of their technology infrastructure. Applications for smart cities pose many security challenges, such as zero-day attacks resulting from exploiting weaknesses in various protocols. Therefore, this paper proposes an optimal hybrid transit search-cascade regional convolutional neural network (hybrid TS-Cascade R-CNN) to detect cyberattacks. The proposed model combines the hybrid transit-search approach with the cascade regional convolutional neural network to create an optimal solution for cyberattack detection. The cascade regional convolutional network uses a hybrid transit search algorithm to enhance the effectiveness of cyberattack detection. By integrating these two approaches, the system can leverage both global traffic patterns and local indicators to improve the accuracy of attack detection. During the training process, the proposed model recognizes and classifies malicious input even in the presence of sophisticated attacks. Finally, the experimental analysis is carried out for various attacks based on different metrics. The accuracy rate attained by the proposed approach is 99.2%, which is acceptable according to standards.
期刊介绍:
Modern computer networks and communication systems are increasing in size, scope, and heterogeneity. The promise of a single end-to-end technology has not been realized and likely never will occur. The decreasing cost of bandwidth is increasing the possible applications of computer networks and communication systems to entirely new domains. Problems in integrating heterogeneous wired and wireless technologies, ensuring security and quality of service, and reliably operating large-scale systems including the inclusion of cloud computing have all emerged as important topics. The one constant is the need for network management. Challenges in network management have never been greater than they are today. The International Journal of Network Management is the forum for researchers, developers, and practitioners in network management to present their work to an international audience. The journal is dedicated to the dissemination of information, which will enable improved management, operation, and maintenance of computer networks and communication systems. The journal is peer reviewed and publishes original papers (both theoretical and experimental) by leading researchers, practitioners, and consultants from universities, research laboratories, and companies around the world. Issues with thematic or guest-edited special topics typically occur several times per year. Topic areas for the journal are largely defined by the taxonomy for network and service management developed by IFIP WG6.6, together with IEEE-CNOM, the IRTF-NMRG and the Emanics Network of Excellence.