Antonio E. Camelo-Júnior, A. W. Ferreira, I. Andrade, S. Mayo, Felipe Nollet, José L. Silva, M. C. Barros, E. Fraga, E. Pessoa
{"title":"Species delimitation in the Trichocentrum cepula (Oncidiinae, Orchidaceae) complex: a multidisciplinary approach","authors":"Antonio E. Camelo-Júnior, A. W. Ferreira, I. Andrade, S. Mayo, Felipe Nollet, José L. Silva, M. C. Barros, E. Fraga, E. Pessoa","doi":"10.1080/14772000.2022.2099478","DOIUrl":null,"url":null,"abstract":"The Trichocentrum cepula complex comprises three species, T. caatingaense, T. cepula and T. sprucei, endemic to tropical forests east of the Andes in South America. The delimitation of these species has been diversely interpreted due to the extensive morphological variation in the complex. We applied an integrative approach to achieve a better understanding of these biological units, using geometric morphometrics, cytogenetic analysis (chromosome counts and CMA/DAPI banding) and molecular phylogenetics (ITS and rpl32-trnL). An initial morphometric analysis using the pre-identified specimens into three taxa suggested that T. sprucei is distinct from the other two, which show some overlap. A subsequent analysis of the labellum, including only T. caatingaense and T. cepula organized in six pseudo-populations, suggested the existence of four morphological groups. All analysed specimens presented 2n = 36 chromosomes, CMA+/DAPI− terminal bands and CMA−/DAPI+ pericentromeric bands, which varied in number across species, localities or even individuals from the same locality. The notable variation in DAPI+ pericentromeric bands may be related to transposable elements that could also be a factor influencing the wide morphological variation in the flowers. In the phylogenetic analysis, the specimens belonging to T. caatingaense formed a strongly supported clade sister to the rest, whereas the specimens belonging to T. cepula and T. sprucei emerged together, with their relationships tending to be determined by geographic proximity. The evidence we generated suggests that treating the Brazilian populations of this species complex under a single name, T. cepula, provides more taxonomic stability and utility, thus the necessary taxonomic changes are implemented.","PeriodicalId":54437,"journal":{"name":"Systematics and Biodiversity","volume":" ","pages":"1 - 18"},"PeriodicalIF":1.8000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematics and Biodiversity","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/14772000.2022.2099478","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 4
Abstract
The Trichocentrum cepula complex comprises three species, T. caatingaense, T. cepula and T. sprucei, endemic to tropical forests east of the Andes in South America. The delimitation of these species has been diversely interpreted due to the extensive morphological variation in the complex. We applied an integrative approach to achieve a better understanding of these biological units, using geometric morphometrics, cytogenetic analysis (chromosome counts and CMA/DAPI banding) and molecular phylogenetics (ITS and rpl32-trnL). An initial morphometric analysis using the pre-identified specimens into three taxa suggested that T. sprucei is distinct from the other two, which show some overlap. A subsequent analysis of the labellum, including only T. caatingaense and T. cepula organized in six pseudo-populations, suggested the existence of four morphological groups. All analysed specimens presented 2n = 36 chromosomes, CMA+/DAPI− terminal bands and CMA−/DAPI+ pericentromeric bands, which varied in number across species, localities or even individuals from the same locality. The notable variation in DAPI+ pericentromeric bands may be related to transposable elements that could also be a factor influencing the wide morphological variation in the flowers. In the phylogenetic analysis, the specimens belonging to T. caatingaense formed a strongly supported clade sister to the rest, whereas the specimens belonging to T. cepula and T. sprucei emerged together, with their relationships tending to be determined by geographic proximity. The evidence we generated suggests that treating the Brazilian populations of this species complex under a single name, T. cepula, provides more taxonomic stability and utility, thus the necessary taxonomic changes are implemented.
期刊介绍:
Systematics and Biodiversity is devoted to whole-organism biology. It is a quarterly, international, peer-reviewed, life science journal, without page charges, which is published by Taylor & Francis for The Natural History Museum, London. The criterion for publication is scientific merit. Systematics and Biodiversity documents the diversity of organisms in all natural phyla, through taxonomic papers that have a broad context (not single species descriptions), while also addressing topical issues relating to biological collections, and the principles of systematics. It particularly emphasises the importance and multi-disciplinary significance of systematics, with contributions which address the implications of other fields for systematics, or which advance our understanding of other fields through taxonomic knowledge, especially in relation to the nature, origins, and conservation of biodiversity, at all taxonomic levels.
The journal does not publish single species descriptions, monographs or applied research nor alpha species descriptions. Taxonomic manuscripts must include modern methods such as cladistics or phylogenetic analysis.