{"title":"Sentiment analysis in aspect term extraction for mobile phone tweets using machine learning techniques","authors":"Venkatesh Naramula, A. Kalaivania","doi":"10.1108/ijpcc-06-2021-0143","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis paper aims to focus on extracting aspect terms on mobile phone (iPhone and Samsung) tweets using NLTK techniques on multiple aspect extraction is one of the challenges. Then, also machine learning techniques are used that can be trained on supervised strategies to predict and classify sentiment present in mobile phone tweets. This paper also presents the proposed architecture for the extraction of aspect terms and sentiment polarity from customer tweets.\n\n\nDesign/methodology/approach\nIn the aspect-based sentiment analysis aspect, term extraction is one of the key challenges where different aspects are extracted from online user-generated content. This study focuses on customer tweets/reviews on different mobile products which is an important form of opinionated content by looking at different aspects. Different deep learning techniques are used to extract all aspects from customer tweets which are extracted using Twitter API.\n\n\nFindings\nThe comparison of the results with traditional machine learning methods such as random forest algorithm, K-nearest neighbour and support vector machine using two data sets iPhone tweets and Samsung tweets have been presented for better accuracy.\n\n\nOriginality/value\nIn this paper, the authors have focused on extracting aspect terms on mobile phone (iPhone and Samsung) tweets using NLTK techniques on multi-aspect extraction is one of the challenges. Then, also machine learning techniques are used that can be trained on supervised strategies to predict and classify sentiment present in mobile phone tweets. This paper also presents the proposed architecture for the extraction of aspect terms and sentiment polarity from customer tweets.\n","PeriodicalId":43952,"journal":{"name":"International Journal of Pervasive Computing and Communications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pervasive Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijpcc-06-2021-0143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2
Abstract
Purpose
This paper aims to focus on extracting aspect terms on mobile phone (iPhone and Samsung) tweets using NLTK techniques on multiple aspect extraction is one of the challenges. Then, also machine learning techniques are used that can be trained on supervised strategies to predict and classify sentiment present in mobile phone tweets. This paper also presents the proposed architecture for the extraction of aspect terms and sentiment polarity from customer tweets.
Design/methodology/approach
In the aspect-based sentiment analysis aspect, term extraction is one of the key challenges where different aspects are extracted from online user-generated content. This study focuses on customer tweets/reviews on different mobile products which is an important form of opinionated content by looking at different aspects. Different deep learning techniques are used to extract all aspects from customer tweets which are extracted using Twitter API.
Findings
The comparison of the results with traditional machine learning methods such as random forest algorithm, K-nearest neighbour and support vector machine using two data sets iPhone tweets and Samsung tweets have been presented for better accuracy.
Originality/value
In this paper, the authors have focused on extracting aspect terms on mobile phone (iPhone and Samsung) tweets using NLTK techniques on multi-aspect extraction is one of the challenges. Then, also machine learning techniques are used that can be trained on supervised strategies to predict and classify sentiment present in mobile phone tweets. This paper also presents the proposed architecture for the extraction of aspect terms and sentiment polarity from customer tweets.