Dong Jiang , Ran Bu , Wei Xia , Yichen Hu , Mengchen Zhou , Enqing Gao , Toru Asahi , Yusuke Yamauchi , Jing Tang
{"title":"Cobalt phthalocyanine-based conjugated polymer as efficient and exclusive electrocatalyst for CO2 reduction to ethanol","authors":"Dong Jiang , Ran Bu , Wei Xia , Yichen Hu , Mengchen Zhou , Enqing Gao , Toru Asahi , Yusuke Yamauchi , Jing Tang","doi":"10.1016/j.matre.2023.100176","DOIUrl":null,"url":null,"abstract":"<div><p>Electrocatalytic conversion of carbon dioxide to high value-added chemicals is a promising method for solving the energy crisis and global warming. Electrochemical active metal-containing conjugated polymers have been widely studied for heterogeneous carbon dioxide reduction. In the present contribution, we designed and synthesized a stable cobalt phthalocyanine-based conjugated polymer, named CoPPc-TFPPy-CP, and also explored its electrocatalytic application in carbon dioxide reduction to liquid products in an aqueous solution. In the catalyst, cobalt phthalocyanine acts as building blocks connected with 1,3,6,8-tetrakis(4-formyl phenyl)pyrenes via imine-linkages, leading to mesoporous formation polymers with the pore size centered at 4.1 nm. And the central cobalt atoms shifted to a higher oxidation state after condensation. With these chemical and structural natures, the catalyst displayed a remarkable electrocatalytic CO<sub>2</sub> reduction performance with an ethanol Faradaic efficiency of 43.25% at −1.0 V vs RHE. While at the same time, the electrochemical reduction process catalyzed by cobalt phthalocyanine produced only carbon monoxide and hydrogen. To the best of our knowledge, CoPPc-TFPPy-CP is the first example among organic polymers and metal-organic frameworks that produces ethanol from CO<sub>2</sub> with a remarkable selectivity.</p></div>","PeriodicalId":61638,"journal":{"name":"材料导报:能源(英文)","volume":"3 1","pages":"Article 100176"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"材料导报:能源(英文)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666935823000022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Electrocatalytic conversion of carbon dioxide to high value-added chemicals is a promising method for solving the energy crisis and global warming. Electrochemical active metal-containing conjugated polymers have been widely studied for heterogeneous carbon dioxide reduction. In the present contribution, we designed and synthesized a stable cobalt phthalocyanine-based conjugated polymer, named CoPPc-TFPPy-CP, and also explored its electrocatalytic application in carbon dioxide reduction to liquid products in an aqueous solution. In the catalyst, cobalt phthalocyanine acts as building blocks connected with 1,3,6,8-tetrakis(4-formyl phenyl)pyrenes via imine-linkages, leading to mesoporous formation polymers with the pore size centered at 4.1 nm. And the central cobalt atoms shifted to a higher oxidation state after condensation. With these chemical and structural natures, the catalyst displayed a remarkable electrocatalytic CO2 reduction performance with an ethanol Faradaic efficiency of 43.25% at −1.0 V vs RHE. While at the same time, the electrochemical reduction process catalyzed by cobalt phthalocyanine produced only carbon monoxide and hydrogen. To the best of our knowledge, CoPPc-TFPPy-CP is the first example among organic polymers and metal-organic frameworks that produces ethanol from CO2 with a remarkable selectivity.